GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of statistical physics 30 (1983), S. 681-698 
    ISSN: 1572-9613
    Keywords: Monte Carlo ; hard-square lattice gas ; critical exponents ; entropy ; pressure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract An approximate technique for estimating the entropyS with computer simulation methods, suggested recently by Meirovitch, is applied here to the Metropolis Monte Carlo (MC) simulation of the hard-square lattice gas in both the grand canonical and the canonical ensembles. The chemical potentialμ, calculated by Widom's method, andS enable one to obtain also the pressureP. The MC results are compared with results obtained with Padé approximants (PA) and are found to be very accurate; for example, at the critical activityz c the MC and the PA estimates forS deviate by 0.5%. Beyondz c this deviation decreases to 0.01% and comparable accuracy is detected forP. We argue that close toz c our results forS, μ, andP are more accurate than the PA estimates. Independent of the entropy study, we also calculate the critical exponents by applying Fisher's finite-size scaling theory to the results for the long-range order, the compressibility and the staggered compressibility, obtained for several lattices of different size at zc. The data are consistent with the critical exponents of the plane Ising latticeβ=1/8,ν=1,γ=7/4, andα=0. Our values forβ and ν agree with series expansion and renormalization group results, respectively,α=0 has been obtained also by matrix method studies; it differs, however, from the estimate of Baxteret al. α=0.09 ± 0.05. As far as we knowγ has not been calculated yet.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 29 (1997), S. 127-140 
    ISSN: 0887-3585
    Keywords: loops ; proteins ; backbone entropy ; flexibility ; Molecular Dynamics ; Ras protein ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The flexibility of surface loops plays an important role in protein-protein and protein-peptide recognition; it is commonly studied by Molecular Dynamics or Monte Carlo simulations. We propose to measure the relative backbone flexibility of loops by the difference in their backbone conformational entropies, which are calculated here with the local states (LS) method of Meirovitch. Thus, one can compare the entropies of loops of the same protein or, under certain simulation conditions, of different proteins. These loops should be equal in size but can differ in their sequence of amino acids residues. This methodology is applied successfully to three segments of 10 residues of a Ras protein simulated by the stochastic boundary molecular dynamics procedure. For the first time estimates of backbone entropy differences are obtained, and their correlation with B factors is pointed out; for example, the segments which consist of residues 60-65 and 112-117 have average B factors of 67 and 18 Å2, respectively, and entropy difference T ΔS = 5.4 ± 0.1 kcal/mol at T = 300 K. In a large number of recent publications the entropy due to the fast motions (on the ps-ns time scale) of N-H and C-H vectors has been obtained from their order parameter, measured in nuclear magnetic resonance spin relaxation experiments. This enables one to estimate differences in the entropy of protein segments due to folding-unfolding transitions, for example. However, the vectors are assumed to be independent, and the effect of the neglected correlations is unknown; our method is expected to become an important tool for assessing this approximation. The present calculations, obtained with the LS method, suggest that the errors involved in experimental entropy differences might not be large; however, this should be verified in each case. Potential applications of entropy calculations to rational drug design are discussed. Proteins 29:127-140, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...