GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mineralized nodule  (1)
  • Peroxidase  (1)
  • 1
    ISSN: 1432-0827
    Keywords: Periodontal ligament fibroblast ; Mineralized nodule ; Ultrastructure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Summary The purposes of this study were to determine whether periodontal ligament (PDL) cells are capable of producing mineralized nodules in vitro and to analyze ultrastructural features of the nodules. Rat PDL cells were obtained from coagulum in the socket at 2 days after tooth extraction and cultured at confluence in standard medium containing Dulbecco's Modified Eagle's Medium supplemented with 10% FBS and antibiotics. To test mineralized nodule formation, cells were further cultured for an additional 3 weeks in the standard medium containing (1) ascorbic acid (50 μg/ml) and sodium β-glycerophosphate (10 mM), (2) ascorbic acid, sodium β-glycerophosphate, and dexamethasone (5 μM), or (3) ascorbic acid alone. Cells were then fixed in 2.5% glutaraldehyde, postfixed in 1% OsO4, and prepared for light and electron microscopy. Threedimensional nodules containing mineralized matrices were formed only when the cells were cultured in the presence of ascorbic acid and dexamethasone. They were composed of multilayered fibroblasts (up to 13 layers), and highly organized collagen fibrils with 64 nm cross-banding patterns between the cell layers. The fibroblasts in the nodules exhibited an elongated shape with a high degree of cytoplasmic polarity throughout the nodule, and have the morphological features of PDL fibroblasts as seen in vivo. Mineral deposition with needle-like crystals was initiated on collagen fibrils located in intercellular spaces of the upper cell layers and became increasingly heavier towards the bottom half of the nodules. X-ray microanalysis and electron diffraction analysis confirmed that mineral deposition contained calcium and phosphate in the form of immature hydroxyapatite. These nodules contained neither osteoblasts nor osteocytes, and have their own morphological organization and characteristics which differ from those formed by bone cells in culture. Therefore, these data suggest that PDL cells are capable of forming mineralized tissue in vitro with the morphological characteristics different from bone mineralized nodules.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 245 (1986), S. 431-437 
    ISSN: 1432-0878
    Keywords: Retina ; Arteriole ; Venule ; Tannic acid ; Peroxidase ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The surface-associated vesicles in retinal arterioles and venules were studied after fixation in glutaraldehyde-tannic acid or after intravitreal injection of peroxidase or lactoperoxidase. The vesicles were concentrated along the abluminal (basal) surface of the endothelial cells and along the plasma membranes of smooth muscle cells in arterioles and of pericytes in post-capillary venules. They were rarely encountered in the deeper regions of these cells. In perpendicular sections through the cell surface the majority of vesicles were in continuity with the plasma membrane whereas in tangential sections, they appeared to lie “free” in the cytoplasm. All such vesicles were labeled after exposure to tannic acid or to the heme-proteins. Peroxidase-reaction product was never seen in the lumen of the vessels. These observations suggest that the surface vesicles in endothelial cells, smooth muscle cells and pericytes are invaginations of the plasma membrane and are thus not involved in the transcytosis or endocytosis of proteins. The vesicles in the latter two cell types may be involved in some aspect of contractility rather than pinocytosis.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...