GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Singapore :Springer,
    Keywords: Microorganisms. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (435 pages)
    Edition: 1st ed.
    ISBN: 9789811626258
    DDC: 578.758
    Language: English
    Note: Intro -- Preface -- Contents -- About the Editors -- 1: Cyanobacteria in Cold Ecosystem: Tolerance and Adaptation -- 1.1 Introduction -- 1.2 Significance of Cold Ecosystem -- 1.3 Ecology and Biogeochemistry of Cyanobacteria -- 1.3.1 Cryptic Niches -- 1.3.2 Hypoliths -- 1.3.3 Endoliths -- 1.3.4 Cryoconites -- 1.3.5 Aquatic Habitats -- 1.4 Ecophysiology of Polar Cyanobacteria and Functional Role of Arctic and Antarctic Cyanobacteria -- 1.5 Polar Region: Extreme Environmental Parameters and Stress Factors -- 1.6 Polar Cyanobacteria: Response to Various Stress Factors -- 1.6.1 General Mechanism of Adaptation -- 1.6.2 Stress Avoidance -- 1.6.3 Stress Tolerance -- 1.6.4 Dormant Cell Formation -- 1.6.5 Morphological Structures -- 1.6.6 Consortia -- 1.6.7 Low Temperature -- 1.6.8 Temperature Perception -- 1.6.9 Lipids -- 1.6.10 Proteins/Enzymes -- 1.6.11 Freeze/Melting Cycles -- 1.6.12 Antifreeze Proteins -- 1.6.13 Compatible Solutes and Cryoprotectants -- 1.6.14 Ice Nucleation Proteins -- 1.6.15 Dessication -- 1.6.16 Extracellular Envelopes -- 1.6.17 Water Stress Proteins -- 1.6.18 Salinity -- 1.6.19 Ionic Regulation -- 1.6.20 Osmotic Regulation -- 1.6.21 Irradiance (PAR) and Ultraviolet Radiation (UVR) -- 1.6.22 Photosynthesis and Photoinhibition at Low Temperature -- 1.6.23 Screening Compounds -- 1.6.24 Antioxidants -- 1.6.25 Survival Strategies: Insight from Metagenomics -- 1.6.26 Subzero Temperature Effect -- 1.7 Impact of Rise in Global Temperature on Polar Cyanobacteria -- 1.7.1 Nitrogen Cycling -- 1.7.2 Carbon Cycling -- 1.8 Conclusion -- References -- 2: Cold-Adapted Fungi: Evaluation and Comparison of Their Habitats, Molecular Adaptations and Industrial Applications -- 2.1 Introduction -- 2.2 Natural Habitats and Their Occurrence -- 2.3 Temperature Range -- 2.4 Cold Adaptations in Fungi: Definition -- 2.5 Cold-Adapted Fungi: A Background. , 2.6 Molecular Adaptations -- 2.7 The Arctic -- 2.8 The Antarctic -- 2.9 Nonpolar Regions -- 2.10 Arctic Fungi -- 2.10.1 Plant-Associated and Free-Living Fungi of Arctic Soils -- 2.10.2 Glacial Ice -- 2.10.3 Marine Fungi from the Arctic -- 2.11 Antarctic Fungi -- 2.11.1 Soils -- 2.11.2 Antarctic Permafrost -- 2.11.3 Endolithic Communities -- 2.12 Harmful Effects in Plants, Animals and Humans -- 2.13 Applications of Fungi in Industry -- 2.13.1 Cold-Active Enzymes -- 2.13.1.1 Proteases -- 2.13.1.2 Chitinases -- 2.13.1.3 Cellulases and Pectinases -- 2.13.1.4 Amylases -- 2.13.1.5 Xylanases -- 2.13.1.6 Lipolytic Enzymes -- 2.13.2 Pharmaceutical Products -- 2.13.3 Bioremediation -- 2.13.4 Pigment Production -- 2.14 Agriculture -- 2.15 Conclusion -- References -- 3: Microbial Life in Cold Regions of the Deep Sea -- 3.1 Introduction -- 3.2 Deep Sea as a Microbial Habitat -- 3.2.1 With Low Temperature -- 3.2.2 With High Pressure -- 3.3 Microbial Diversity in Deep Sea -- 3.4 Microbial Adaptations at Deep Sea -- 3.4.1 Low-Temperature Adaptations -- 3.4.1.1 Maintenance of Membrane Structure by the Generation of Unsaturated Fatty Acids -- 3.4.1.2 Cold-Shock Proteins (CSP) -- Functions of Cold-Shock Proteins -- 3.4.1.3 Viable but Non-Culturable Cell (VBNC) -- Mechanism of VBNC Formation -- 3.4.1.4 Antifreeze Proteins -- Mechanism of AFP -- 3.4.1.5 Adaptation Mechanism of Psychrophilic Enzymes -- 3.4.1.6 Piezophiles/Barophiles -- 3.4.2 Adaptation Mechanism of Piezophiles (High-Pressure Adaptations) -- 3.4.2.1 Membrane Lipid Adaptation -- 3.4.2.2 Outer Membrane Porins -- 3.4.2.3 Membrane Transport -- 3.4.2.4 Respiratory Chain -- 3.4.2.5 Motility Under High Pressure -- 3.4.2.6 Enzymes Adaptations Under High Pressure -- Low Stability -- High Compressibility -- High Absolute Activity -- High Relative Activity at High Pressures. , 3.5 Microbial Nutrition and Metabolism in Deep Sea -- 3.5.1 Chemistry of Deep Sea -- 3.5.2 Microbial Metabolism in Deep Sea -- 3.6 Conclusion -- References -- 4: Adaptation to Cold Environment: The Survival Strategy of Psychrophiles -- 4.1 Introduction -- 4.2 Ecological Adaptability of Psychrophiles -- 4.3 Environmental Adaptability of Psychrophiles -- 4.3.1 Membrane Fluidity -- 4.3.2 Cold-Shock and Heat-Shock Responses -- 4.3.3 Antifreeze Proteins (AFPs) -- 4.3.4 Cryoprotectants -- 4.3.5 Cold-Adapted Enzymes -- 4.3.6 Carotenoid Pigments -- 4.3.7 Protein Folding in Psychrophiles -- 4.3.7.1 Marine Environment -- 4.3.7.2 Non-marine Environment -- 4.3.7.3 Glacier Environment -- 4.4 Adaptation to Cold Habitat -- 4.4.1 Morphological Features -- 4.4.2 Molecular Aspects -- 4.4.3 Other Special Features -- 4.5 RandD Effort Innovation Technologies to Find Specific Adaptations -- 4.6 Conclusion -- References -- 5: Enzymatic Behaviour of Cold Adapted Microbes -- 5.1 Introduction -- 5.2 Psychrophillic Enzymes -- 5.2.1 Cold Adapted Activity -- 5.2.1.1 Inactivation and Unfolding -- 5.2.1.2 Active Site Architecture -- 5.2.1.3 Active Site Dynamics -- 5.2.1.4 Adaptive Drift and Adaptive Optimization of Substrate Affinity -- 5.2.1.5 Comparative Structural Analysis of Extremophiles -- 5.2.1.6 Composition of Amino Acids -- 5.2.1.7 Secondary Structural Elements -- 5.2.1.8 Comparative Proteome Analysis -- 5.2.1.9 Amino Acid Substitution Pattern -- 5.3 Kinetics and Energetics of Cold Activity -- 5.4 Conformational Stability -- 5.4.1 Structural Origin of Low Stability -- 5.5 Folding Funnel Model of Cold Active Enzymes -- 5.6 Psychrophillic Enzymes in Biotechnology -- 5.6.1 Heat Lability in Molecular Biology -- 5.6.2 Application of Cold Active Enzymes for Manufacturing Chemicals and Wastewater Treatment -- 5.6.3 Cold Active Enzymes Used in the Food Industry. , 5.7 Future Prospects -- 5.8 Conclusion -- References -- 6: An Overview of Survival Strategies of Psychrophiles and Their Applications -- 6.1 Introduction -- 6.2 Types of Extremophiles -- 6.2.1 Thermophiles -- 6.2.2 Psychrophiles -- 6.2.3 Acidophiles -- 6.2.4 Alkaliphiles -- 6.2.5 Halophiles -- 6.2.6 Piezophiles -- 6.3 Survival Strategies Adapted by Psychrophiles -- 6.3.1 Cell Membrane Fluidity -- 6.3.2 Antifreeze Proteins (AFPs) -- 6.3.3 Cold Shock Proteins -- 6.4 Applications of Cold Adapted Microbes -- 6.4.1 Psychrophilic Enzymes in Different Industries -- 6.4.2 Use of Psychrophilic Microorganisms in Bioremediation -- 6.4.3 Role of Psychrophiles in Medicine and Pharmaceuticals -- 6.4.4 Role of Psychrophiles in Domestic Purposes -- 6.4.5 Application of Psychrophiles in Textile-Based Industries -- 6.5 Psychrophiles Used in Fine Chemical Synthesis -- 6.6 Role of Psychrophiles in Agriculture -- 6.7 Conclusion and Future Prospectives -- References -- 7: Microbial Genes Responsible for Cold Adaptation -- 7.1 Introduction -- 7.2 Cold-Adapted Microorganisms -- 7.2.1 Diversity of Cold-Adapted Microorganisms -- 7.2.2 Strategies for Cold Adaptation -- 7.3 Cold Adaptation Genes -- 7.3.1 Cold Shock Response -- 7.3.1.1 Cold Shock Response in E. coli -- 7.3.1.2 Cold Shock Response in B. subtilis -- 7.3.1.3 Cold Shock Response in Psychrotrophs and Psychrophiles -- 7.3.2 Cold Acclimation Proteins -- 7.4 Genomic Studies -- 7.4.1 Psychrotrophic Microorganisms -- 7.4.2 Microbial Physiological Adaptations -- 7.4.3 Cell Membrane Modulation -- 7.4.4 Osmoprotection and Cryoprotection: Compatible Solutes -- 7.4.5 Freeze Protection -- 7.4.6 Extracellular Compounds -- 7.4.7 Transport and Diffusion -- 7.4.8 RNA/DNA Secondary Structure -- 7.4.9 Substrate Oxidation -- 7.5 Conclusion -- References -- 8: Survival Strategies in Cold-Adapted Microorganisms -- 8.1 Introductions. , 8.2 Survival Strategies of Cold-Adapted Microorganisms: Initial Studies -- 8.2.1 Physiological Adaptations Exhibited by Cold-Adapted Microorganisms -- 8.2.2 Structural Alterations of Proteins/Enzymes in Cold-Adapted Microorganisms -- 8.2.3 Alterations Ensuring Biomembrane Fluidity in Cold-Adapted Microorganism -- 8.2.4 Other Subtle Adaptations Exhibited by Cold-Adapted Microorganisms -- 8.2.5 Metagenomics- and Genomics-Based Studies of Cold-Adapted Microorganisms -- 8.3 Systems Biology Studies of Cold-Adapted Microorganisms -- 8.3.1 Comparative Genomic Studies of Cold-Adapted Microorganisms -- 8.3.2 Transcriptomics Studies of Cold-Adapted Microorganisms -- 8.3.3 Proteomics Studies of Cold-Adapted Microorganisms -- 8.4 Conclusion and Future Prospects -- References -- 9: Microbial Adaptations Under Low Temperature -- 9.1 Introduction -- 9.2 Microbial Adaptations Under Low Temperature -- 9.2.1 Sensing the Temperature -- 9.2.2 Structural Adaptation of Enzymes -- 9.2.3 Membrane Fluidity -- 9.2.4 Metabolism at Low Temperatures -- 9.2.5 Heat-Shock Proteins -- 9.2.6 Cold-Shock Proteins -- 9.2.7 Cryoprotectants -- 9.2.8 Antifreeze Proteins -- 9.3 Future Prospects -- References -- 10: Molecular Mechanisms of Cold-Adapted Microorganisms -- 10.1 Introduction -- 10.2 Cold-Adapted Enzymes -- 10.3 Modifications in Transcription and Translation -- 10.4 Role of Polyhydroxyalkanoates (PHA) -- 10.5 Cryoprotectant and Cold-Shock Proteins -- 10.6 Role of RNA Degradosome -- 10.7 Changes in Membrane Fluidity -- 10.8 Fatty Acid Desaturation -- 10.9 Branching of Fatty Acids -- 10.10 Cis- and Trans-Fatty Acids -- 10.11 Amino Acid: Composition and Length Variation -- 10.12 Modifications at Protein-Folding Stage -- 10.12.1 Translation -- 10.12.2 Folding Assistance -- 10.13 Conclusion -- References. , 11: Microbe-Mediated Plant Functional Traits and Stress Tolerance: The Multi-Omics Approaches.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...