GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2013
    Keywords: Key words SHR ; Membrane lipid composition ; Membrane fluidity ; D-glucose transport ; SGLT-1 ; Brush-border membrane vesicles
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The current studies explore the effect of hypertension on D-glucose transport into jejunal brush-border membrane vesicles (BBMV). Spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto (WKY) rats, as a control group, were used. The purity of the BBMV from both groups of animals was validated by the finding that the specific activity of brush-border enzyme marker, sucrase, was severalfold greater in membrane vesicles compared with corresponding values in mucosal homogenate. D-glucose uptake was Na+ dependent in both groups of animals, with a transient increase in the intravesicular concentration of D-glucose. However, the initial rate and the magnitude of the accumulation of Na+-dependent D-glucose was significantly higher in SHR compared with WKY rats. In order to investigate the mechanism(s) for the increase in Na+-dependent D-glucose transport in SHR, several experiments were performed: (1) an experiment that indicated 22Na uptake, as an indicator for Na+ permeability, was similar between SHR and WKY rats, (2) kinetic studies that indicated that V max values of SHR were significantly greater that those of WKY rats. In contrast, similar K m values for glucose were found between SHR and WKY rats, (3) Na+-dependent phlorizin binding measurements that were not altered by hypertension and (4) a study of the brush-border membrane lipid composition that showed a significant increase in the free cholesterol/phospholipid ratio in SHR. We conclude that altered membrane cholesterol content and consequently altered lipid fluidity could be, at least in part, responsible for the observed increase in Na+-dependent D-glucose transport in SHR.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...