GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 79 (1990), S. 556-560 
    ISSN: 1432-2242
    Keywords: Double-stranded RNA ; Male sterility ; Rice
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Double-stranded RNA (dsRNA) was isolated from rice Oryza sativa ssp. japonica, but not from other subspecies. The dsRNA has been found in all of the examined cytoplasmic male-sterile (CMS) lines of BT (Chinsurah Boro II)-type rice, but was not detected in their companionate maintainer lines. It is uniquely and positivley correlated with the CMS trait in BT-type rice. Recently, the dsRNA was also found in a nuclear malesterile (NMS) rice, Nongken 58s, but was not found in its normal Nongken 58. The molecular weight of this dsRNA was estimated to be about 18 kb. Electron microscopic analysis reveals that it is linear snapped. The double strandedness of the RNA molecules was characterized by CF-11 cellulose column chromatography and nuclease treatments. It bound to CF-11 cellulose in the presence of 15% ethanol. It was sensitive to RNase A at low salt concentrations, but insensitive to DNase I, SI nuclease, and RNase A at high salt concentrations. The dsRNA was detected in both mitochondrial and cytoplasmic fractions. Dot-blot hybridization reveals that there is no sequence homology between this dsRNA and mtDNA, but there is homology between this dsRNA and nuclear genomic DNA. We have not been able to transmit this dsRNA to fertile rice.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-12-04
    Description: SRPK2 is abnormally activated in tauopathies including Alzheimer’s disease (AD). SRPK2 is known to play an important role in pre–mRNA splicing by phosphorylating SR-splicing factors. Dysregulation of tau exon 10 pre–mRNA splicing causes pathological imbalances in 3R- and 4R-tau, leading to neurodegeneration; however, the role of SRPK2 in these processes remains unclear. Here we show that delta-secretase (also known as asparagine endopeptidase; AEP), which is activated in AD, cleaves SRPK2 and increases its nuclear translocation as well as kinase activity, augmenting exon 10 inclusion. Conversely, AEP-uncleavable SRPK2 N342A mutant increases exon 10 exclusion. Lentiviral expression of truncated SRPK2 increases 4R-tau isoforms and accelerates cognitive decline in htau mice. Uncleavable SRPK2 N342A expression improves synaptic functions and prevents spatial memory deficits in tau intronic mutant FTDP-17 transgenic mice. Hence, AEP mediates tau-splicing imbalance in tauopathies via cleaving SRPK2.
    Keywords: Neuroscience
    Print ISSN: 0022-1007
    Electronic ISSN: 1540-9538
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...