GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 126(4), (2021): e2020JB019395, https://doi.org/10.1029/2020JB019395.
    Description: Improved understanding of the impact of crystal mush rheology on the response of magma chambers to magmatic events is critical for better understanding crustal igneous systems with abundant crystals. In this study, we extend an earlier model by Liao et al. (2018); https://doi.org/10.1029/2018jb015985 which considers the mechanical response of a magma chamber with poroelastic crystal mush, by including poroviscoelastic rheology of crystal mush. We find that the coexistence of the two mechanisms of poroelastic diffusion and viscoelastic relaxation causes the magma chamber to react to a magma injection event with more complex time-dependent behaviors. Specifically, we find that the system’s short-term evolution is dominated by the poroelastic diffusion process, while its long-term evolution is dominated by the viscoelastic relaxation process. We identify two post-injection timescales that represent these two stages and examine their relation to the material properties of the system. We find that better constraints on the poroelastic diffusion time are more important for the potential interpretation of surface deformation using the model.
    Keywords: Crystal mush ; Ground deformation ; Magma chamber ; Volcanic unrest
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 123(11), (2018): 9376-9406. doi: 10.1029/2018JB015985.
    Description: Improved constraints on the mechanical behavior of magma chambers is essential for understanding volcanic processes; however, the role of crystal mush on the mechanical evolution of magma chambers has not yet been systematically studied. Existing magma chamber models typically consider magma chambers to be isolated melt bodies surrounded by elastic crust. In this study, we develop a physical model to account for the presence and properties of crystal mush in magma chambers and investigate its impact on the mechanical processes during and after injection of new magma. Our model assumes the magma chamber to be a spherical body consisting of a liquid core of fluid magma within a shell of crystal mush that behaves primarily as a poroelastic material. We investigate the characteristics of time‐dependent evolution in the magma chamber, both during and after the injection, and find that quantities such as overpressure and tensile stress continue to evolve after the injection has stopped, a feature that is absent in elastic (mushless) models. The time scales relevant to the postinjection evolution vary from hours to thousands of years, depending on the micromechanical properties of the mush, the viscosity of magma, and chamber size. We compare our poroelastic results to the behavior of a magma chamber with an effectively viscoelastic shell and find that only the poroelastic model displays a time scale dependence on the size of the chamber for any fixed mush volume fraction. This study demonstrates that crystal mush can significantly influence the mechanical behaviors of crustal magmatic reservoirs.
    Description: We thank James Rice, Tushar Mittal, Chris Huber and Helge Gonnerman for useful discussions in the early stages of this work. S. Adam Soule was supported by National Science Foundation Grant OCE‐1333492. Meghan Jones was supported by the U.S. Department of Defense through the National Defense Science and Engineering Graduate Fellowship (NDSEG) Program. The numerical codes used for computing the results in the work can be found at https://github.com/YangVol/MushyChamber.
    Description: 2019-03-30
    Keywords: Magma chamber ; Crystal mush ; Poroelasticity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...