GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lymphoid Neoplasia  (2)
  • diabetes  (2)
  • 1
    ISSN: 1432-0428
    Keywords: Ketone body turnover ; ketogenesis ; acetone ; lipolysis ; insulin ; diabetes ; glucagon ; somatostatin ; non-esterified fatty acids ; glycerol ; glucose
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary To assess the role of glucagon and insulin in the acute regulation of ketone body kinetics in man, somatostatin was administered with various combinations of these hormones by replacement infusions in groups of six to seven normal subjects. Somatostatin-induced insulin and glucagon deficiency produced a threefold increase in total ketone body concentrations within 2 h. This increase was the combined result of enhanced production (71%), and decreased metabolic clearance (32%), as determined by14C-acetoacetate infusions. An associated elevation of non-esterified fatty acids (66%) and glycerol levels occurred. Glucagon replacement (2 ng · kg-1 · min-1) during insulin deficiency failed to enhance ketogenesis or lipolysis but lowered theβ-hydroxybutyrate/acetoacetate concentration ratios. Hyperglycaemia, observed during glucagon administration and insulin deficiency, did not diminish ketone body production or lipolysis. In contrast, insulin replacement (150 μU · kg-1 · min-1) diminished lipolysis, lowered ketone production, and elevated the metabolic clearance rate of ketone bodies. Glucagon infusions (2 and 4 ng · kg-1 · min-1) during somatostatin and insulin replacement did not accelerate ketone body production or raise non-esterified fatty acid levels, but produced a dose-dependent elevation of blood glucose levels. The results suggest that glucagon is not an important ketogenic hormone under the conditions studied.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0428
    Keywords: Growth hormone ; ketone bodies ; ketogenesis ; nonesterified fatty acids ; glycerol ; diabetes ; insulin ; glucagon ; somatostatin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The effect of physiological elevation of growth hormone levels on ketone body kinetics was determined using a 14C-ketone body tracer technique in normal and acutely insulin-deficient man. Changes of ketone body production and metabolic clearance rates during growth hormone infusion (plasma levels of approximately 25 μg/l) were measured during basal conditions and during heparin-induced elevation of non-esterified fatty acid levels. Growth hormone administration to six subjects fasted overnight resulted in an increase in ketone body production which exceeded that observed in nine control subjects (5.5±0.5 versus 3.1±0.1μmol·kg-1·min-1, p〈0.025) after elevation of plasma non-esterified fatty acids. Growth hormone infusion increased glycerol and non-esterified fatty acid concentrations indicating enhanced lipolysis. During somatostatin-induced acute insulin deficiency (n=7), growth hormone enhanced the increase in total ketone body production observed in six subjects receiving somatostatin alone (8.4±0.8 versus 4.1±0.7μmol·kg-1·min-1, p〈0.01). Total ketone body metabolic clearance decreased by 50% during somatostatin and remained uninfluenced by growth hormone. Non-esterified fatty acids and glycerol levels increased during somatostatin, and growth hormone failed to alter nonesterified fatty acid levels significantly. The results demonstrate a stimulatory effect of high physiological growth hormone levels on ketogenesis which is largely explained by an enhancement of lipolysis and thus increase in substrate supply for ketogenesis. Growth hormone administration during acute insulin deficiency enhanced ketogenesis in the absence of alterations in plasma non-esterified fatty acid levels, suggesting a direct hepatic ketogenic effect.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-09-26
    Description: Myc oncogenic transcription factors (c-Myc, N-Myc, and L-Myc) coordinate the control of cell growth, division, and metabolism. In cancer, Myc overexpression is often associated with aggressive disease, which is in part due to the destruction of select targets by the ubiquitin-proteasome system (eg, SCF Skp2 -directed destruction of the Cdk inhibitor p27 Kip1 ). We reasoned that Myc would also regulate SUMOylation, a related means of posttranslational modification of proteins, and that this circuit would play essential roles in Myc-dependent tumorigenesis. Here, we report marked increases in the expression of genes that encode regulators and components of the SUMOylation machinery in mouse and human Myc-driven lymphomas, resulting in hyper-SUMOylation in these tumors. Further, inhibition of SUMOylation by genetic means disables Myc-induced proliferation, triggering G2/M cell-cycle arrest, polyploidy, and apoptosis. Using genetically defined cell models and conditional expression systems, this response was shown to be Myc specific. Finally, in vivo loss-of-function and pharmacologic studies demonstrated that inhibition of SUMOylation provokes rapid regression of Myc-driven lymphoma. Thus, targeting SUMOylation represents an attractive therapeutic option for lymphomas with MYC involvement.
    Keywords: Lymphoid Neoplasia
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-02-03
    Description: Burkitt lymphoma (BL) is an aggressive B-cell neoplasm that is currently treated by intensive chemotherapy in combination with anti-CD20 antibodies. Because of their toxicity, current treatment regimens are often not suitable for elderly patients or for patients in developing countries where BL is endemic. Targeted therapies for BL are therefore needed. In this study, we performed a compound screen in 17 BL cell lines to identify small molecule inhibitors affecting cell survival. We found that inhibitors of heat shock protein 90 (HSP90) induced apoptosis in BL cells in vitro at concentrations that did not affect normal B cells. By global proteomic and phosphoproteomic profiling, we show that, in BL, HSP90 inhibition compromises the activity of the pivotal B-cell antigen receptor (BCR)-proximal effector spleen tyrosine kinase (SYK), which we identified as an HSP90 client protein. Consistently, expression of constitutively active TEL-SYK counteracted the apoptotic effect of HSP90 inhibition. Together, our results demonstrate that HSP90 inhibition impairs BL cell survival by interfering with tonic BCR signaling, thus providing a molecular rationale for the use of HSP90 inhibitors in the treatment of BL.
    Keywords: Lymphoid Neoplasia
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...