GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lung  (1)
  • acetaminophen  (1)
  • 1
    ISSN: 1420-908X
    Keywords: Silica ; Lung ; Inflammation ; Dexamethasone ; Peroxynitrite ; Chemiluminescence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The inhalation of silica has been shown to produce a dramatic inflammatory and toxic response within the lungs of humans and laboratory animals. Currently, no effective treatment exists for workers who may have been exposed to the inhalation of silica. The objective of this study was to develop an animal model in which we could evaluate the effect that anti-inflammatory steroids have on the acute silica-induced pulmonary inflammatory response. Male Fischer 344 rats were pretreated with either dexamethasone (2 mg/kg) or saline vehicle (i.p.) on days 1, 3, and 5. On day 6, the animals from the two groups were then intratracheally instilled with either silica (20 mg/0.5 ml saline vehicle) or saline vehicle (0.5 ml). Twenty-four hours after the instillations in the non-steroid group, significant increases occurred in total protein, total number of cells, neutrophils, and lymphocytes recovered from the lungs of animals treated with silica compared to saline controls. Silica also caused dramatic increases in the luminol-dependent chemiluminescence (LDCL) of lung tissue and bronchoalveolar lavage (BAL) cells. The LDCL reaction was markedly decreased by either superoxide dismutase (SOD) orN-nitro-l-arginine methyl ester hydrochloride (l-NAME). SOD is involved in the enzymatic breakdown of superoxide anion, whilel-NAME, a nitric oxide (NO) synthase inhibitor, prevents the formation of NO. When the superoxide anion and NO react, they form the highly oxidizing substance peroxynitrite. This study then implicates peroxynitrite as an agent which may be involved in the silica-induced oxidant lung injury. When the animals were pretreated with the steroid dexamethasone, there was a complete protection against the biochemical, cellular, and chemiluminescent indices of damage caused by silica. The mechanism in which the steroid protects the lung from damage may be due to the ability of dexamethasone to block the induction of NO synthase. With further study in animals, the anti-inflammatory steroids may be useful in the treatment of silicainduced lung injury.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0884-3996
    Keywords: peroxynitrite ; antioxidants ; luminol ; acetaminophen ; phenols ; catecholamines ; norepinephrine ; isoproterenol ; epinephrine ; SIN-1 ; sydnonimines ; polyphenols ; catechins ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: This study is based on a simple chemical interaction of peroxynitrite (O=N—O—O-) and luminol, which produces blue light upon oxidation. Since peroxynitrite has a half-life of about 1 s, a drug known as linsidomine (SIN-1) is used as a peroxynitrite generator. Peroxynitrite can oxidize lipids, proteins and nucleic acids. Upon the stimulation of inflammation and/or infection, macrophages and neutrophils can be induced to produce large amounts of peroxynitrite, which can oxidize phenols and sulphhydryl-containing compounds. Therefore, phenols and sulphhydryls eliminate peroxynitrite. This is an example of the Yin-Yang hypothesis e.g. oxidation-reduction. Acetaminophen (Tylenol®) can inhibit fever and some types of pain without being a particularly effective anti-inflammatory. Since it is a phenol, it could act as a nitration target for peroxynitrite. Then peroxynitrite, the possible cause of pain and elevated temperature, might be destroyed in the reaction. Acetaminophen is a phenolic compound which produces a clear inhibitory dose-response curve with peroxynitrite in its range of clinical effectiveness. Whether acetaminophen actually works as we suggest is to be proven. Three different types of reaction could decrease the amount of peroxynitrite: (a) interference with base-catalysed opening of the SIN-1 molecule; (b) destruction of one or both substances needed to form it -  superoxide and/or nitric oxide; when the SIN-1 degrades to superoxide and nitric oxide, the former may be destroyed by superoxide dismutase (SOD); (c) peroxynitrite may react directly with phenols (mono-, di-, tri- and tetraphenols), possibly by nitration. Nordihydroguaiaretic acid and 2-hydroxyestradiol (catechol estrogen) are potent inhibitors of luminol light emission. Epineprine, isoproterenol, pyrogallol, catechol and ascorbic acid (a classic antioxidant) are all inhibitors of luminol chemiluminescence. Isoproterenol, norepinephrine/and epinephrine first inhibit light but overall stimulate the light production. Initially, SIN-1 degrades to produce peroxynitrite, which reacts with luminol to produce blue light. If any of three catecholamines are present with the reaction that produces light, there is an initial inhibition of light production, and then a marked stimulation. A possible reason for this is that these catechols are oxidized and the metabolized phenol stimulates the production of light from luminol. Also, during oxidation of catecholamines superoxide is sometimes formed, which could stimulate production of peroxynitrite. This simple screening system is introduced to find useful antioxidants against peroxynitrite. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...