GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lower crust  (2)
Document type
Keywords
Publisher
Years
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 40 (2013): 2579–2584, doi:10.1002/grl.50375.
    Description: Determining the bulk composition of island arc lower crust is essential for distinguishing between competing models for arc magmatism and assessing the stability of arc lower crust. We present new constraints on the composition of high P-wave velocity (VP = 7.3–7.6 km/s) lower crust of the Aleutian arc from best-fitting average lower crustal VP/VS ratio using sparse converted S-waves from an along-arc refraction profile. We find a low VP/VS of ~1.7–1.75. Using petrologic modeling, we show that no single composition is likely to explain the combination of high VP and low VP/VS. Our preferred explanation is a combination of clinopyroxenite (~50–70%) and alpha-quartz bearing gabbros (~30–50%). This is consistent with Aleutian xenoliths and lower crustal rocks in obducted arcs, and implies that ~30–40% of the full Aleutian crust comprises ultramafic cumulates. These results also suggest that small amounts of quartz can exert a strong influence on VP/VS in arc crust.
    Description: PBK’s contributions supported by the Arthur D. Storke Chair at Columbia University and by NSF grants OCE 0520378, OCE 0728077, and EAR 0727013.
    Description: 2013-12-07
    Keywords: Island arc ; Vp/Vs ; Lower crust
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/msword
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author, 2006. This is the author's version of the work. It is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in Journal of Petrology 47 (2006): 1051-1093, doi:10.1093/petrology/egl002.
    Description: The Early to Middle Jurassic Talkeetna Arc section exposed in the Chugach Mountains of south central Alaska is 5-18 km wide and extends for over 150 km. This accreted island arc includes exposures of upper mantle to volcanic upper crust. The section comprises six lithologic units, in order of decreasing depth: (1) residual upper mantle harzburgite (with lesser proportions of dunite); (2) pyroxenite; (3) basal gabbronorite; (4) lower crustal gabbronorite; (5) mid-crustal plutonic rocks; and (6) volcanic rocks. The pyroxenites overlie residual mantle peridotite, with some interfingering of the two along the contact. The basal gabbronorite overlies pyroxenite, again with some interfingering of the two different units along their contact. Lower crustal gabbronorite (≤10 km thick) includes abundant rocks with well developed modal layering. The mid-crustal plutonic rocks include a heterogeneous assemblage of gabbroic rocks, dioritic to tonalitic rocks (30-40% area), and concentrations of mafic dikes and chilled mafic inclusions. The volcanic rocks (~7 km thick) range from basalt to rhyolite. Many of the evolved volcanic compositions are a result of fractional crystallisation processes whose cumulate products are directly observable in the lower crustal gabbronorites. For example, Ti and Eu enrichments in lower crustal gabbronorites are mirrored by Ti and Eu depletions in evolved volcanics. In addition, calculated parental liquids from ion microprobe analyses of clinopyroxene in lower crustal gabbronorites indicate that the clinopyroxenes crystallised in equilibrium with liquids whose compositions were the same as the compositions of volcanic rocks. The compositional variation of the main series of volcanic and chilled mafic rocks can be modeled through fractionation of observed phase compositions and phase proportions in lower crustal gabbronorite (i.e. cumulates). Primary, mantle-derived melts in the Talkeetna Arc underwent fractionation of pyroxenite at the base of the crust. Our calculations suggest that more than 25 wt % of the primary melts crystallised as pyroxenites at the base of the crust. The discrepancy between the observed proportion of pyroxenites (less than 5% of the arc section) and the proportion required by crystal fractionation modeling (more than 25%) may be best understood as the result of gravitational instability, with dense ultramafic cumulates, probably together with dense garnet granulites, foundering into the underlying mantle during the time when the Talkeetna Arc was magmatically active, or in the initial phases of slow cooling (and sub-solidus garnet growth) immediately after the cessation of arc activity.
    Description: This study was supported by National Science Foundation Grant EAR-9910899.
    Keywords: Island arc crust ; Layered gabbro ; Alaska geology ; Island arc magmatism ; Lower crust
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...