GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-4919
    Keywords: L-cells ; oleic acid ; cis-parinaric acid ; trans-parinaric acid ; fatty acid ; transport ; fluorescence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract Relatively little is known of fatty acid specificity in cellular fatty acid uptake. In this study L-cells, a fibroblastic cell line with very low levels of endogenous cytosolic fatty acid binding protein, were used to examine the role of cis and trans unsaturation on fatty acid uptake. The fluorescent fatty acids, trans-parinaric acid and cis-parinaric acid, were used as analogs of straight-chain saturated, and kinked-chain unsaturated fatty acids, respectively, in order to evaluate the fatty acid specificity of the uptake system. Parinaric acid is poorly metabolizable; greater than 97% was unesterified while 3H-oleic acid was almost totally metabolized after 30 min uptake. Cis- and trans-parinaric acid uptake was saturable and dependent on the concentration of fatty acid. However, the initial rate and maximal amount of trans-parinaric acid taken up by the L-cells was greater than for cis-parinaric acid under the same conditions. The affinity of L-cell uptake for trans-parinaric acid (Km = 0.12 uM) was 35-fold higher than that for cis-parinaric acid (Km = 4.17 uM) . Based on competition studies with oleic and stearic acids, it was concluded that the cis- and trans-parinaric acid were taken up by the same L-cell fatty acid uptake system. The results suggest that the L-cell fatty acid uptake system has selectivity for straight chain rather than kinked chain unsaturated fatty acids.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-4919
    Keywords: fatty acid ; cis-parinaric acid ; adipocyte ; transport ; diabetes ; insulin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract The effect of diabetic status and insulin on adipocyte plasma membrane properties and fatty acid uptake was examined. Studies with inhibitors and isolated adipocyte ghost plasma membranes indicated 9Z, 11E, 13E, 15Z-octatetraenoic acid (cis-parinaric acid) uptake was protein mediated. Cis-parinaric acid uptake was inhibited by trypsin treatment or incubation with phloretin, and competed with stearic acid. The initial rate, but not maximal uptake, of cis-parinaric acid uptake was enhanced two-fold in adipocytes from diabetic rats. Concomitantly, the structure and lipid composition of adipocyte ghost membranes was dramatically altered. However, the increased initial rate of cis-parinaric acid uptake in the diabetic adipocytes was not explained by membrane alterations or by a two-fold decrease in cytosolic adipocyte fatty acid binding protein (ALBP), unless ALBP stimulated fatty acid efflux. Thus, diabetic status dramatically altered adipocyte fatty acid uptake, plasma membrane structu re, lipid composition, and cytosolic fatty acid binding protein. (Mol Cell Biochem 167: 51-60, 1997)
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 68 (1982), S. 1-10 
    ISSN: 1432-1424
    Keywords: Liver ; plasma membrane ; triiodothyronine ; propylthiouracil ; insulin ; fluorescence ; fatty acid
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary The fluorescent fatty acids,trans-parimaric andcis-parinaric acid, were used as analogs of saturated and unsaturated fatty acids in order to evaluate binding of fatty acids to liver plasma membranes isolated from normal fed rats. Insulin (10−8 to 10−6 m) decreasedtrans-parinaric acid binding 7 to 26% whilecis-parinaric acid binding was unaffected. Glucagon (10−6 m) increasedtrans-parinaric acid binding 44%. The fluorescence polarization oftrans-parinarate,cis-parinarate and 1,6-diphenyl-1,3,5-hexatriene was used to investigate effects of triiodothyronine, insulin and glucagon on the structure of liver plasma membranes from normal fed rats or from rats treated with triiodothyronine or propylthiouracil. The fluorescence polarization oftrans-parinarate,cis-parinarate, and 1,6-diphenyl-1,3,5-hexatriene was 0.300±0.004, 0.251±0.003, and 0.302±0.003, respectively, in liver plasma membranes from control rats and 0.316±0.003, 0.276±0.003 and 0.316±0.003, respectively, in liver plasma membranes from hyperthyroid rats (p〈0.025,n=5). Propylthiouracil treatment did not significantly alter the fluorescence polarization of these probe molecules in the liver plasma membranes. Thus, liver plasma membranes from hyperthyroid animals appear to be more rigid than those of control animals. The effects of triiodothyronine, insulin and glucagon addedin vitro to isolated liver plasma membrane preparations were also evaluated as follows: insulin (10−10 m) and triiodothyronine (10−10 m) increased fluorescence polarization oftrans-parinaric acid,cis-parinaric acid and 1,6-diphenyl-1,3,5-hexatriene in liver plasma membranes while glucagon (10−10 m) had no effects. These hormonal effects on probe fluorescence polarization in liver plasma membranes were abolished by pretreatment of the rats for 7 days with triiodothyronine. Administration of triiodothyronine (10−10 m)in vitro increased the fluorescence polarization of trans-parinaric acid in liver plasma membranes from propylthiouracil-treated rats. Thus, hyperthyroidism appeared to abolish thein vitro increase in polarization of probe molecules in the liver plasma membranes. Temperature dependencies in Arrhenius plots of absorption-corrected fluorescence and fluorescence polarization oftrans-parinaric acid,cis-parinaric acid and 1,6-diphenyl-1,3,5-hexatriene were noted near 25°C in liver plasma membranes from triiodothyronine-treated rats and near 18°C in liver plasma membranes from propylthiouracil-treated rats. In summary, hormones such as triiodothyronine, insulin and glucagon may at least in part exert their biological effects on metabolism by altering the structure of the liver plasma membranes.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...