GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of solid state electrochemistry 3 (1999), S. 179-186 
    ISSN: 1433-0768
    Keywords: Key words Cathodic protection system ; Carbon ; oxidation ; Composite carbon/polymer anode ; Lifetime
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The suitability of a polymeric composite material for use as part of an anode structure in a cathodic protection system has been examined. The composite material was a conductive blend (volume resistivity typically 1.5 Ω cm) of carbon black in a polyethylene binder. A long operational lifetime for the material demands that the rate of carbon loss must be low. In the work reported here, electrochemical and in situ analytical techniques were employed to characterise the performance of the material over a wide range of anodic current densities in a variety of aqueous electrolytes. The predominant anodic electrochemical reaction on the polymeric material is CO2 formation in acid and neutral solutions, which causes loss of carbon from the surface and the development of a non-conducting layer of polyethylene. The characteristics of the reaction suggest that it occurs via the discharge of H2O. In alkaline pH, however, the anodic reactions are more complex. A high OH− concentration (pH 12 or higher) favours the formation of oxygen rather than CO2, particularly at low anodic potentials. The presence of CO3 2− in the electrolyte catalyses the evolution of oxygen at pH values as low as 9. The electrochemical formation of oxygen always occurs in parallel with the generation of some humic acid in the solution.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...