GLORIA

GEOMAR Library Ocean Research Information Access

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • International Polar Year (2007-2008); IPY  (1)
Document type
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Sasgen, Ingo; van den Broeke, Michiel R; Bamber, Jonathan L; Rignot, Eric; Sørensen, Louise Sandberg; Wouters, Bert; Martinec, Zdenek; Velicogna, Isabella; Simonsen, Sebastian B (2012): Timing and origin of recent regional ice-mass loss in Greenland. Earth and Planetary Science Letters, 333-334, 293-303, https://doi.org/10.1016/j.epsl.2012.03.033
    Publication Date: 2023-12-13
    Description: Within the last decade, the Greenland ice sheet (GrIS) and its surroundings have experienced record high surface temperatures (Mote, 2007, doi:10.1029/2007GL031976; Box et al., 2010), ice sheet melt extent (Fettweis et al., 2011, doi:10.5194/tc-5-359-2011) and record-low summer sea-ice extent (Nghiem et al., 2007, doi:10.1029/2007GL031138). Using three independent data sets, we derive, for the first time, consistent ice-mass trends and temporal variations within seven major drainage basins from gravity fields from the Gravity Recovery and Climate Experiment (GRACE; Tapley et al., 2004, doi:10.1029/2004GL019920), surface-ice velocities from Inteferometric Synthetic Aperture Radar (InSAR; Rignot and Kanagaratnam, 2006, doi:10.1126/science.1121381) together with output of the regional atmospheric climate modelling (RACMO2/ GR; Ettema et al., 2009, doi:10.1029/2009GL038110), and surface-elevation changes from the Ice, cloud and land elevation satellite (ICESat; Sorensen et al., 2011, doi:10.5194/tc-5-173-2011). We show that changing ice discharge (D), surface melting and subsequent run-off (M/R) and precipitation (P) all contribute, in a complex and regionally variable interplay, to the increasingly negative mass balance of the GrIS observed within the last decade. Interannual variability in P along the northwest and west coasts of the GrIS largely explains the apparent regional mass loss increase during 2002-2010, and obscures increasing M/R and D since the 1990s. In winter 2002/2003 and 2008/2009, accumulation anomalies in the east and southeast temporarily outweighed the losses by M/R and D that prevailed during 2003-2008, and after summer 2010. Overall, for all basins of the GrIS, the decadal variability of anomalies in P, M/R and D between 1958 and 2010 (w.r.t. 1961-1990) was significantly exceeded by the regional trends observed during the GRACE period (2002-2011).
    Keywords: International Polar Year (2007-2008); IPY
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...