GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Agriculture, Ecosystems & Environment 214 (2015): 10-20, doi:10.1016/j.agee.2015.08.006.
    Description: Soil fertility declines constrain crop productivity on smallholder farms in sub-Saharan Africa. Government and non-government organizations promote the use of mineral fertilizer and improved seed varieties to redress nutrient depletion and increase crop yields. Similarly, rotational cropping with nitrogen (N)-fixing legume cover crops or trees is promoted to improve soil fertility and crop yields. We examined maize grain yields and partial N balances on 24 smallholder maize farms in western Kenya, where interventions have increased access to agricultural inputs and rotational legume technologies. On these farms, mineral fertilizer inputs ranged from 0 to 161 kg N ha-1 (mean = 48 kg N ha-1), and maize grain yields ranged from 1-7 tons ha-1 (mean = 3.4 t ha-1). Partial N balances ranged from large losses (-112 kg N ha-1) to large gains (93 kg N ha-1)with a mean of -3 kg N ha-1. Maize grain yields increased significantly with N inputs (from fertilizer and legumes) in 2012 but not in 2013 when rainfall was lower. Nitrogen inputs of 40 kg N ha-1 were required to produce 3 tons of maize ha-1. N balances varied both among farms and between years, highlighting the importance of tracking inputs and outputs on multiple farms over multiple years before drawing conclusions about nutrient management, soil fertility outcomes and food security. The addition of N from legume rotations was a strong predictor of grain yields and positive N balances in lower-yielding farms in both years. This suggested that legume rotations may be particularly important for buffering yields from climate variability and maintaining N balances in low rainfall years.
    Description: This research was funded by an Earth Institute at Columbia University Cross-Cutting Initiative Grant, a National Science Foundation PIRE grant (IIA-0968211), and by the Bill and Melinda Gates Foundation (Gates Special Initiative Grant).
    Keywords: Nitrogen balance ; Sub-Saharan Africa ; Maize yields ; Smallholder agriculture ; Legume rotations ; Improved fallow
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...