GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Hydrogen. ; Hydrogen industry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (746 pages)
    Edition: 1st ed.
    ISBN: 9781119829577
    DDC: 665.81
    Language: English
    Note: Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Transition Metal Oxides in Solar-to-Hydrogen Conversion -- 1.1 Introduction -- 1.2 Solar-to-Hydrogen Conversion Processes Utilizing Transition Metal Oxides -- 1.2.1 Photocatalysis -- 1.2.2 Photoelectrocatalysis -- 1.2.3 Thermochemical Water Splitting -- 1.3 Transition Metal Oxides in Solar-to-Hydrogen Conversion Processes -- 1.3.1 Photocatalysis and Photoelectrocatalysis -- 1.3.1.1 TiO2 -- 1.3.1.2 α-Fe2O3 -- 1.3.1.3 CuO/Cu2O -- 1.3.2 Thermochemical Water Splitting -- 1.3.2.1 Fe3O4/FeO Redox Pair -- 1.3.2.2 CeO2/Ce2O3 and CeO/CeO2-ä Redox Pairs -- 1.3.2.3 ZnO/Zn Redox Pair -- 1.4 Conclusions and Future Perspectives -- References -- Chapter 2 Catalytic Conversion Involving Hydrogen from Lignin -- List of Abbreviations -- 2.1 Introduction -- 2.1.1 Background of Bio-Refinery and Lignin -- 2.1.2 Lignin as an Alternate Source of Energy -- 2.1.3 Lignin Isolation Process -- 2.2 Catalytic Conversion of Lignin -- 2.2.1 Lignin Reductive Depolymerization into Aromatic Monomers -- 2.2.2 Catalytic Hydrodeoxydation (HDO) of Lignin -- 2.2.3 Hydrodeoxydation (HDO) of Lignin-Derived-Bio-Oil -- Summary and Outlook -- References -- Chapter 3 Solar-Hydrogen Coupling Hybrid Systems for Green Energy -- 3.1 Concept of Green Sources and Green Storage -- 3.2 Coupling of Green to Green -- 3.3 Solar Energy-Hydrogen System -- 3.3.1 Photoelectrochemical Hydrogen Production -- 3.3.1.1 PEC Materials -- 3.3.1.2 Photoelectrochemical Systems -- 3.3.2 Electrochemical Hydrogen Production -- 3.3.2.1 Polymer Electrolyte Membrane Electrolysis Cell (PEMEC) -- 3.3.2.2 Alkaline Electrolysis Cell (AEC) -- 3.3.2.3 Solid Oxide Electrolysis Cell (SOEC) -- 3.3.3 Fuel Cell -- 3.3.4 Photovoltaic -- 3.4 Thermochemical Systems -- 3.5 Photobiological Hydrogen Production -- 3.6 Conclusion -- References. , Chapter 4 Green Sources to Green Storage on Solar-Hydrogen Coupling -- 4.1 Introduction -- 4.1.1 Hybrid System -- 4.2 Concentrated Solar Thermal H2 Production -- 4.3 Thermochemical Aqua Splitting Technology for Solar-H2 Generation -- 4.4 Solar to Hydrogen Through Decarbonization of Fossil Fuels -- 4.4.1 Solar Cracking -- 4.5 Solar Thermal-Based Hydrogen Generation Through Electrolysis -- 4.6 Photovoltaics-Based Hydrogen Production -- 4.7 Conclusion -- References -- Chapter 5 Electrocatalysts for Hydrogen Evolution Reaction -- 5.1 Introduction -- 5.2 Parameters to Evaluate Efficient HER Catalysts -- 5.2.1 Overpotential (o.p) -- 5.2.2 Tafel Plot -- 5.2.3 Stability -- 5.2.4 Faradaic Efficiency and Turnover Frequency -- 5.2.5 Hydrogen Bonding Energy (HBE) -- 5.3 Categories of HER Catalysts -- 5.3.1 Noble Metal-Based Catalysts -- 5.3.2 Non-Noble Metal-Based Catalysts -- 5.3.3 Metal-Free 2D Nanomaterials -- 5.3.4 Transition Metal Dichalcogenides -- 5.3.5 Transition Metal Oxides and Hydroxides -- 5.3.6 Transition Metal Phosphides -- 5.3.7 MXenes (Transition Metal Carbides and Nitrides) -- Conclusion -- References -- Chapter 6 Recent Progress on Metal Catalysts for Electrochemical Hydrogen Evolution -- 6.1 Introduction -- 6.1.1 Type of Water Electrolysis Technologies -- 6.1.1.1 Alkaline Electrolysis (AE) -- 6.1.1.2 Proton Exchange Membrane Electrolysis (PEME) -- 6.1.1.3 Solid Oxide Electrolysis (SOE) -- 6.2 Mechanism of Hydrogen Evolution Reaction (HER) -- 6.2.1 Performance Evaluation of Catalyst -- 6.3 Various Electrocatalysts for Hydrogen Evolution Reaction (HER) -- 6.3.1 Noble Metal Catalysts for HER -- 6.3.1.1 Platinum-Based Catalysts -- 6.3.1.2 Palladium Based Catalysts -- 6.3.1.3 Ruthenium Based Catalysts -- 6.3.2 Non-Noble Metal Catalysts -- 6.3.2.1 Transition Metal Phosphides (TMP) -- 6.3.2.2 Transition Metal Chalcogenides. , 6.3.2.3 Transition Metal Carbides (TMC) -- 6.4 Conclusion and Future Aspects -- References -- Chapter 7 Dark Fermentation and Principal Routes to Produce Hydrogen -- 7.1 Introduction -- 7.2 Biohydrogen Production from Organic Waste -- 7.2.1 Crude Glycerol -- 7.2.1.1 Dark Fermentation of Crude Glycerol to Biohydrogen and Bio Products -- 7.2.2 Dairy Waste -- 7.2.2.1 Dark Fermentation of Dairy Waste to Biohydrogen and Bioproducts -- 7.2.3 Fruit Waste -- 7.2.3.1 Dark Fermentation of Fruit Waste to Hydrogen and Bioproducts -- 7.3 Anaerobic Systems -- 7.3.1 Continuous Multiple Tube Reactor -- 7.4 Conclusion and Future Perspectives -- Acknowledgements -- References -- Chapter 8 Catalysts for Electrochemical Water Splitting for Hydrogen Production -- 8.1 Introduction -- 8.2 Water Splitting and Their Products -- 8.3 Different Methods Used for Water Splitting -- 8.3.1 Setup for Water Splitting Systems at a Basic Level -- 8.3.2 Photocatalysis -- 8.3.3 Electrolysis -- 8.4 Principles of PEC and Photocatalytic H2 Generation -- 8.5 Electrochemical Process for Water Splitting Application -- 8.5.1 Water Splitting Through Electrochemistry -- 8.6 Different Materials Used in Water Splitting -- 8.6.1 Water Oxidation (OER) Materials -- 8.6.2 Developing Materials for Hydrogen Synthesis -- 8.6.3 Material Stability for Water Splitting -- 8.7 Mechanism of Electrochemical Catalysis in Water Splitting and Hydrogen Production -- 8.7.1 Electrochemical Water Splitting with Cheap Metal-Based Catalysts -- 8.7.2 Catalysts with Only One Atom -- 8.7.3 Electrochemical Water Splitting Using Low-Cost Metal-Free Catalysts -- 8.8 Water Splitting and Hydrogen Production Materials Used in Electrochemical Catalysis -- 8.8.1 Metal and Alloys -- 8.8.2 Metal Oxides/Hydroxides and Chalogenides -- 8.8.3 Metal Carbides, Borides, Nitrides, and Phosphides. , 8.9 Uses of Hydrogen Produced from Water Splitting -- 8.9.1 Water Splitting Generates Hydrogen Energy -- 8.9.2 Photoelectrochemical (PEC) Water Splitting -- 8.9.3 Thermochemical Water Splitting -- 8.9.4 Biological Water Splitting -- 8.9.5 Fermentation -- 8.9.6 Biomass and Waste Conversions -- 8.9.7 Solar Thermal Water Splitting -- 8.9.8 Renewable Electrolysis -- 8.9.9 Hydrogen Dispenser Hose Reliability -- 8.10 Conclusion -- References -- Chapter 9 Challenges and Mitigation Strategies Related to Biohydrogen Production -- 9.1 Introduction -- 9.2 Limitation and Mitigation Approaches of Biohydrogen Production -- 9.2.1 Physical Issues and Their Mitigation Approaches -- 9.2.1.1 Operating Temperature Issue and Its Control -- 9.2.1.2 Hydraulic Retention Time (HRT) and Optimization -- 9.2.1.3 High Hydrogen Partial Pressure - Implication and Overcoming the Issue -- 9.2.1.4 Membrane Fouling Issues and Solutions -- 9.2.2 Biological Issues and Their Mitigation Approaches -- 9.2.2.1 Start-Up Issue and Improvement Through Bioaugmentation -- 9.2.2.2 Biomass Washout Issue and Solution Through Cell Immobilization -- 9.2.3 Chemical Issues and Their Mitigation Approaches -- 9.2.3.1 pH Variation and Its Regulation -- 9.2.3.2 Limiting Nutrient Loading and Optimization -- 9.2.3.3 Inhibitor Secretion and Its Control -- 9.2.3.4 Byproduct Formation and Its Exploitation -- 9.2.4 Economic Issues and Ways to Optimize Cost -- 9.3 Conclusion and Future Direction -- Acknowledgements -- References -- Chapter 10 Continuous Production of Clean Hydrogen from Wastewater by Microbial Usage -- 10.1 Introduction -- 10.2 Wastewater for Biohydrogen Production -- 10.3 Photofermentation -- 10.3.1 Continuous Photofermentation -- 10.3.2 Factors Affecting Photofermentation Hydrogen Production -- 10.3.2.1 Inoculum Condition and Substrate Concentration -- 10.3.2.2 Carbon and Nitrogen Source. , 10.3.2.3 Temperature -- 10.3.2.4 pH -- 10.3.2.5 Light Intensity -- 10.3.2.6 Immobilization -- 10.4 Dark Fermentation -- 10.4.1 Continuous Dark Fermentation -- 10.4.2 Factors Affecting Hydrogen Production in Continuous Dark Fermentation -- 10.4.2.1 Start-Up Time -- 10.4.2.2 Organic Loading Rate -- 10.4.2.3 Hydraulic Retention Time -- 10.4.2.4 Temperature -- 10.4.2.5 pH -- 10.4.2.6 Immobilization -- 10.5 Microbial Electrolysis Cell -- 10.5.1 Mechanism of Microbial Electrolysis Cell -- 10.5.2 Wastewater Treatment and Hydrogen Production -- 10.5.3 Factors Affecting Microbial Electrolysis Cell Performance -- 10.5.3.1 Inoculum -- 10.5.3.2 pH -- 10.5.3.3 Temperature -- 10.5.3.4 Hydraulic Retention Time -- 10.5.3.5 Applied Voltage -- 10.6 Conclusions -- References -- Chapter 11 Conversion Techniques for Hydrogen Production and Recovery Using Membrane Separation -- 11.1 Introduction -- 11.2 Conversion Technique for Hydrogen Production -- 11.2.1 Photocatalytic Hydrogen Generation via Particulate System -- 11.2.2 Photoelectrochemical Cell (PEC) -- 11.2.3 Photovoltaic-Photoelectrochemical Cell (PV-PEC) -- 11.2.4 Electrolysis -- 11.3 Hydrogen Recovery Using Membrane Separation (H2/O2 Membrane Separation) -- 11.3.1 Polymeric Membranes -- 11.3.2 Porous Membranes -- 11.3.3 Dense Metal Membranes -- 11.3.4 Ion-Conductive Membranes -- 11.4 Conclusion -- Acknowledgements -- References -- Chapter 12 Geothermal Energy-Driven Hydrogen Production Systems -- Abbreviations -- 12.1 Introduction -- 12.2 Hydrogen - A Green Fuel and an Energy Carrier -- 12.3 Production of Hydrogen -- 12.3.1 Fossil Fuel-Based -- 12.3.2 Non-Fossil Fuel-Based -- 12.4 Geothermal Energy -- 12.4.1 Introductory View -- 12.4.2 Types and Occurrences -- 12.5 Hydrogen Production From Geothermal Energy -- 12.5.1 Hydrogen Production Systems -- 12.5.2 Working Fluids. , 12.5.3 Assimilation of Solar and Geothermal Energy.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...