GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Plant, Cell & Environment 37 (2014): 899-910, doi:10.1111/pce.12206.
    Description: The movement of water from moist to dry soil layers through the root systems of plants, referred to as hydraulic redistribution (HR), occurs throughout the world and is thought to influence carbon and water budgets and ecosystem functioning. The realized hydrologic, biogeochemical, and ecological consequences of HR depend on the amount of redistributed water, while the ability to assess these impacts requires models that correctly capture HR magnitude and timing. Using several soil types and two eco-types of sunflower (Helianthus annuus L.) in split-pot experiments, we examined how well the widely used HR modeling formulation developed by Ryel et al. (2002) matched experimental determination of HR across a range of water potential driving gradients. H. annuus carries out extensive nighttime transpiration, and though over the last decade it has become more widely recognized that nighttime transpiration occurs in multiple species and many ecosystems, the original Ryel et al. (2002) formulation does not include the effect of nighttime transpiration on HR. We developed and added a representation of nighttime transpiration into the formulation, and only then was the model able to capture the dynamics and magnitude of HR we observed as soils dried and nighttime stomatal behavior changed, both influencing HR.
    Description: This work was supported by a NOAA Climate and Global Change Postdoctoral Fellowship to RBN, administered by the University Corporation for Atmospheric Research, by a grant from the Andrew W. Mellon Foundation to NMH, and by DOE Terrestrial Ecosystem Science grant ER65389 to ZGC and RBN.
    Description: 2014-10-24
    Keywords: Hydraulic redistribution ; Hydraulic lift ; Helianthus annuus ; Sunflower ; Nighttime transpiration ; Soil texture
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...