GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Goodness-of-fit  (1)
  • Heterotrophic bacteria  (1)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © Elsevier B.V., 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Journal of Marine Systems 76 (2009): 4-15, doi:10.1016/j.jmarsys.2008.03.011.
    Description: Coupled biological/physical models of marine systems serve many purposes including the synthesis of information, hypothesis generation, and as a tool for numerical experimentation. However, marine system models are increasingly used for prediction to support high-stakes decision-making. In such applications it is imperative that a rigorous model skill assessment is conducted so that the model’s capabilities are tested and understood. Herein, we review several metrics and approaches useful to evaluate model skill. The definition of skill and the determination of the skill level necessary for a given application is context specific and no single metric is likely to reveal all aspects of model skill. Thus, we recommend the use of several metrics, in concert, to provide a more thorough appraisal. The routine application and presentation of rigorous skill assessment metrics will also serve the broader interests of the modeling community, ultimately resulting in improved forecasting abilities as well as helping us recognize our limitations.
    Description: JIA was funded by theme 9 of the NERC core strategic Oceans2025 program
    Keywords: Goodness-of-fit ; Skill metric ; Skill assessment ; Model uncertainty
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © Inter-Research, 2010. This article is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Aquatic Microbial Ecology 60 (2010): 273-287, doi:10.3354/ame01427.
    Description: Previous studies have focused on the role of labile dissolved organic matter (DOM) (defined as turnover time of ~1 d) in supporting heterotrophic bacterial production, but have mostly neglected semilabile DOM (defined as turnover time of ~100 to 1000 d) as a potential substrate for heterotrophic bacterial growth. To test the hypothesis that semilabile DOM supports substantial amounts of heterotrophic bacterial production in the open ocean, we constructed a 1-dimensional epipelagic ecosystem model and applied it to 3 open ocean sites: the Arabian Sea, Equatorial Pacific and Station ALOHA in the North Pacific Subtropical Gyre. The model tracks carbon, nitrogen and phosphorus with flexible stoichiometry. This study used a large number of observations, including measurements of heterotrophic bacterial production rates and standing stocks, and DOM concentration data, to rigorously test and constrain model output. Data assimilation was successfully applied to optimize the model parameters and resulted in simultaneous representation of observed nitrate, phosphate, phytoplankton and zooplankton biomass, primary production, heterotrophic bacterial biomass and production, DOM, and suspended and sinking particulate organic matter. Across the 3 ocean ecosystems examined, the data assimilation suggests semilabile DOM may support 17 to 40% of heterotrophic bacterial carbon demand. In an experiment where bacteria only utilize labile DOM, and with more of the DOM production assigned to labile DOM, the model poorly represented the observations. These results suggest that semilabile DOM may play an important role in sustaining heterotrophic bacterial growth in diverse regions of the open ocean.
    Description: Y.W.L. was supported by fellowships from the Virginia Institute of Marine Sciences and Marine Biological Laboratory as well as NSF Grants OPP-0217282 and 0823101 to H.W.D. and VIMS and MBL, respectively. M.A.M.F.’s participation was supported in part by a grant from the NASA Ocean Biology and Biogeochemistry program (NNX07AF70G), S.C.D.’s participation was supported by an NSF grant to the Center for Microbial Oceanography, Research and Education (CMORE), NSF EF-0424599, and M.J.C. was supported in part by NSF grants EF-0424599 (C-MORE) and OCE 0425363.
    Keywords: Heterotrophic bacteria ; Semilabile dissolved organic matter ; Marine ecosystem model ; Data assimilation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...