GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Glass transition  (1)
  • 1
    ISSN: 1042-7147
    Keywords: Heat capacity ; Enthalpy ; Entropy ; Gibbs ; function ; Anisotropic melt ; Glass transition ; Disordering transition ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The thermal properties, i.e., heat capacity, enthalpy, entropy, and Gibbs function, and the transition behavior of the copolymer system of 4-hydroxybenzoic acid and 2,6-hydroxynaphthoic acid have been studied based on differential scanning calorimetry. The heat capacities of the glass, crystal, and anisotropic melt are shown to be largely additive on a molar basis. Additivity is lost in the two transition regions, glass transition and disordering transition. Isothermal crystallization experiments on the copolymers revealed the existence of two types of crystals which melt at high temperature (fast-grown crystals) and low temperature (slowly grown crystals). The ATHAS computation method is used to bring heat capacities of the solid state into agreement with approximate frequency spectra. The changes in heat capacity at the glass transitions occur at 434°K for the poly(oxy-1,4-benzoyl) [33.2 J/(K mol)] and at 420°K for poly(oxy-2,6-naphthoyl) [46.5 J/(K mol)]. The copolymers have a transition range of above 100°K. The anisotropic melt is linked to the well-known condis state of poly(oxy-1,4-benzoyl) by a continuous changes in disorder and mobility without an additional first-order transition.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...