GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Geschichtsschreibung  (1)
  • Mt. Etna  (1)
  • 1
    Book
    Book
    Cambridge [u.a.] : Cambridge Univ. Press
    Keywords: Volcanism Effect of environment on ; Volcanism History ; Volcanology ; Eruption ; Vulkanismus ; Geoarchäologie ; Auswirkung ; Geschichtsschreibung ; Geschichte Anfänge- ; Eruption ; Vulkanismus ; Geoarchäologie ; Auswirkung ; Geschichtsschreibung
    Description / Table of Contents: "What does it take for a volcanic eruption to really shake the world? Did volcanic eruptions extinguish the dinosaurs, or help humans to evolve, only to decimate their populations with a super-eruption 73,000 years ago? Did they contribute to the ebb and flow of ancient empires, the French Revolution and the rise of fascism in Europe in the 19th century? These are some of the claims made for volcanic cataclysm. Volcanologist Clive Oppenheimer explores rich geological, historical, archaeological and palaeoenvironmental records (such as ice cores and tree rings) to tell the stories behind some of the greatest volcanic events of the past quarter of a billion years. He shows how a forensic approach to volcanology reveals the richness and complexity behind cause and effect, and argues that important lessons for future catastrophe risk management can be drawn from understanding events that took place even at the dawn of human origins"--
    Type of Medium: Book
    Pages: XV, 392 S. , Ill., graph. Darst., Kt. , 23 cm
    Edition: 1. publ.
    ISBN: 9780521641128 , 0521641128
    DDC: 551.21
    RVK:
    RVK:
    Language: English
    Note: Literaturverz. S. 369 - 384
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-06-08
    Description: Magmatic degassing, typically measured as SO2 flux, plays a fundamental role in controlling volcanic eruption style and is one of the key parameters used by volcano observatories to assess volcanic unrest and detect eruption precursors. Volcanic tremor, the integrated amplitude of seismic energy release over a range of frequencies, is also a key parameter in volcano monitoring. A connection between volcanic degassing and tremor has been inferred through correlations between the signals which are often, but not always, observed during periods of unrest or eruption. However, data are often equivocal and our understanding of the physical processes, which couple degassing with tremor are still evolving. New insights into degassing-tremor coupling can be made by investigation of the long-term relationship between degassing and tremor, focusing on the frequency-dependence of tremor and passive degassing behavior. In this study, we examine how long-term SO2 emission rates and volcanic tremor on Mt. Etna, track rapid variability in eruptive dynamics. Correlations between SO2 flux and tremor are explored in both quiescent and eruptive periods, comparing the two parameters at both long and short time-scales (〈 〈 1 day) for 2 years. Our analysis reveals that over month-long timescales passive degassing of SO2 and tremor tend to be well-correlated, but these correlations are lost over shorter timescales. This reflects a coupling process between passive degassing and tremor, produced by a combination of gas flow through permeable magma and the convective flow of magma within the conduit. Short-term correlations are lost because variations in the continuous degassing process are relatively small compared with the overall degassing rate and fall below measurement noise. During eruptive periods strong correlations are observed between degassing and tremor, with a significant contribution of higher frequency signal in tremor, controlled by eruptive style. These observations suggest that in syneruptive periods the tremor source is dominated by the coupling between the eruption column and the ground through infrasonic waves, rather than conduit processes. Our results demonstrate the importance of high quality long-term observations and offer new insights into the physical mechanisms which couple degassing and volcanic tremor at active volcanoes.
    Description: Published
    Description: Article 157
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Mt. Etna ; SO2 flux ; volcanic tremor ; eruptive and quiescent degassing ; volcano monitoring ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...