GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Geographic name/locality; Growth rate; LATITUDE; LONGITUDE; Sample code/label; Sample comment  (1)
Document type
Keywords
  • Geographic name/locality; Growth rate; LATITUDE; LONGITUDE; Sample code/label; Sample comment  (1)
Publisher
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Brachert, Thomas C; Reuter, Markus; Kroeger, Karsten F; Lough, Janice M (2006): Coral growth bands: A new and easy to use paleothermometer in paleoenvironment analysis and paleoceanography. Paleoceanography, 21, PA4217, https://doi.org/10.1029/2006PA001288
    Publication Date: 2023-05-12
    Description: Modern scleractinian corals are classical components of marine shallow warm water ecosystems. Their occurrence and diversity patterns in the geological record have been widely used to infer past climates and environmental conditions. Coral skeletal composition data reflecting the nature of the coral environment are often affected by diagenetic alteration. Ghost structures of annual growth rhythms are, however, often well preserved in the transformed skeleton. We show that these relicts represent a valuable source of information on growth conditions of fossil corals. Annual growth bands were measured in massive hemispherical Porites of late Miocene age from the island of Crete (Greece) that were found in patch reefs and level bottom associations of attached mixed clastic environments as well as isolated carbonate environments. The Miocene corals grew slowly, about 2-4 mm/yr, compatible with present-day Porites from high-latitude reefs. Slow annual growth of the Miocene corals is in good agreement with the position of Crete at the margin of the Miocene reef belt. Within a given time slice, extension rates were lowest in level bottom environments and highest in attached inshore reef systems. Because sea surface temperatures (SSTs) can be expected to be uniform within a time slice, spatial variations in extension rates must reflect local variations in light levels (low in the level bottom communities) and nutrients (high in the attached reef systems). During the late Miocene (Tortonian–early Messinian), maximum linear extension rates remained remarkably constant within seven chronostratigraphic units, and if the relationship of SSTs and annual growth rates observed for modern massive Indo-Pacific Porites spp. applies to the Neogene, minimum (winter) SSTs were 20°-21°C. Although our paleoclimatic record has a low resolution, it fits the trends revealed by global data sets. In the near future we expect this new and easy to use Porites thermometer to add important new information to our understanding of Neogene climate.
    Keywords: Geographic name/locality; Growth rate; LATITUDE; LONGITUDE; Sample code/label; Sample comment
    Type: Dataset
    Format: text/tab-separated-values, 470 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...