GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Gas exchange  (1)
  • Seamount  (1)
Document type
Keywords
Years
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Aquatic Geochemistry 19 (2013): 371-397, doi:10.1007/s10498-013-9214-7.
    Description: Note from corresponding author: authors Feely and Shamberger were added after the initial submission, but before the final submission.
    Description: An array of MAPCO2 buoys, CRIMP-2, Ala Wai, and Kilo Nalu, deployed in the coastal waters of Hawaii have produced multiyear high temporal resolution CO2 records in three different coral reef environments off the island of Oahu, Hawaii. This study, which includes data from June 2008-December 2011, is part of an integrated effort to understand the factors that influence the dynamics of CO2-carbonic acid system parameters in waters surrounding Pacific high island coral reef ecosystems and subject to differing natural and anthropogenic stresses. The MAPCO2 buoys are located on the Kaneohe Bay backreef, and fringing reef sites on the south shore of O’ahu, Hawai’i. The buoys measure CO2 and O2 in seawater and in the atmosphere at 3-hour intervals, as well as other physical and biogeochemical parameters (CTD, chlorophyll-a, turbidity). The buoy records, combined with data from synoptic spatial sampling, have allowed us to examine the interplay between biological cycles of productivity/respiration and calcification/dissolution and biogeochemical and physical forcings on hourly to inter-annual time scales. Air-sea CO2 gas exchange was also calculated to determine if the locations were sources or sinks of CO2 over seasonal, annual, and interannual time periods. Net annualized fluxes for CRIMP-2, Ala Wai, and Kilo Nalu over the entire study period were 1.15 mol C m-2 yr-1, 0.045 mol C m-2 yr-1, and -0.0056 mol C m-2 yr-1, respectively, where positive values indicate a source or a CO2 flux from the water to the atmosphere, and negative values indicate a sink or flux of CO2 from the atmosphere into the water. These values are of similar magnitude to previous estimates in Kaneohe Bay as well as those reported from other tropical reef environments. Total alkalinity (AT) was measured in conjunction with pCO2 and the carbonic acid system was calculated to compare with other reef systems and open ocean values around Hawaii. These findings emphasize the need for high-resolution data of multiple parameters when attempting to characterize the carbonic-acid system in locations of highly variable physical, chemical, and biological parameters (e.g. coastal systems, reefs).
    Description: This work was supported in part by a grant/cooperative agreement from the National Oceanic and Atmospheric Administration, Project R/IR-3, which is sponsored by the University of Hawaii Sea Grant College Program, SOEST, under Institutional Grant No. NA09OAR4170060 from NOAA Office of Sea Grant, Department of Commerce.
    Description: 2014-11-06
    Keywords: Carbon dioxide ; Alkalinity ; Gas exchange ; Coral reefs ; Tropical
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Chemie der Erde - Geochemistry 66 (2006): 81-108, doi:10.1016/j.chemer.2005.09.002.
    Description: A half century of investigations are summarized here on the youngest Hawaiian volcano, Lō`ihi Seamount. It was discovered in 1952 following an earthquake swarm. Surveying in 1954 determined it has an elongate shape, which is the meaning of its Hawaiian name. Lō`ihi was mostly forgotten until two earthquake swarms in the 1970’s led to a dredging expedition in 1978, which recovered young lavas. This led to numerous expeditions to investigate the geology, geophysics, and geochemistry of this active volcano. Geophysical monitoring, including a realtime submarine observatory that continuously monitored Lō`ihi’s seismic activity for three months, captured some of the volcano’s earthquake swarms. The 1996 swarm, the largest recorded in Hawai`i, was preceded by at least one eruption and accompanied by the formation of a ~300-m deep pit crater, renewing interest in this submarine volcano. Seismic and petrologic data indicate that magma was stored in a ~8-9 km deep reservoir prior to the 1996 eruption. Studies on Lō`ihi have altered conceptual models for the growth of Hawaiian and other oceanic island volcanoes and led to a refined understanding of mantle plumes. Petrologic and geochemical studies of Lō`ihi lavas showed that the volcano taps a relatively primitive part of the Hawaiian plume, producing a wide range of magma compositions. These compositions have become progressively more silica-saturated with time reflecting higher degrees of partial melting as the volcano drifts towards the center of the hotspot. Seismic and bathymetric data have highlighted the importance of landsliding in the early formation of an ocean island volcano. Lō`ihi’s internal structure and eruptive behavior, however, cannot be fully understood without installing monitoring equipment directly on the volcano. The presence of hydrothermal activity at Lō`ihi was initially proposed based on nontronite deposits on dredged samples that indicated elevated temperatures (31oC), and on the detection of water temperature, methane and 3He anomalies, and clumps of benthic micro-organisms in the water column over the volcano in 1982. Submersible observations in 1987 confirmed a low temperature system (15-30oC) prior to the 1996 formation of Pele’s Pit. The sulfide mineral assemblage (wurtzite, pyrrhotite, and chalcopyrite) deposited after the pit crater collapsed are consistent with hydrothermal fluids 〉250oC. Vent temperatures have decreased to ~60oC during the 2004 dive season indicating the current phase of hydrothermal activity may be waning.
    Description: This work was supported by a NSF grant to M. Garcia (OCE 97-29894).
    Keywords: Loihi ; Seamount ; Hawaii ; Petrology ; Geochemistry ; Earthquakes
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: 5069811 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...