GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GIK/IfG; Institute for Geosciences, Christian Albrechts University, Kiel  (3)
Document type
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Winn, Kyaw; Sarnthein, Michael; Erlenkeuser, Helmut (1991): d18O stratigraphy and chronology of Kiel sediment cores from the East Atlantic. Berichte-Reports, Geologisch-Paläontologisches Institut der Universität Kiel, 45, 99 pp, https://doi.org/10.2312/reports-gpi.1991.45
    Publication Date: 2024-02-03
    Description: Based on detailed reconstructions of global distribution patterns, both paleoproductivity and the benthic d13C record of CO2, which is dissolved in the deep ocean, strongly differed between the Last Glacial Maximum and the Holocene. With the onset of Termination I about 15,000 years ago, the new (export) production of low- and mid-latitude upwelling cells started to decline by more than 2-4 Gt carbon/year. This reduction is regarded as a main factor leading to both the simultaneous rise in atmospheric CO2 as recorded in ice cores and, with a slight delay of more than 1000 years, to a large-scale gradual CO2 depletion of the deep ocean by about 650 Gt C. This estimate is based on an average increase in benthic d13C by 0.4-0.5 per mil. The decrease in new production also matches a clear 13C depletion of organic matter, possibly recording an end of extreme nutrient utilization in upwelling cells. As shown by Sarnthein et al., [1987], the productivity reversal appears to be triggered by a rapid reduction in the strength of meridional trades, which in turn was linked via a shrinking extent of sea ice to a massive increase in high-latitude insolation, i.e., to orbital forcing as primary cause.
    Keywords: GIK/IfG; Institute for Geosciences, Christian Albrechts University, Kiel
    Type: Dataset
    Format: application/zip, 17 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-03
    Description: This data collection presents sediment core descriptions and age models of sediment cores from the South China Sea.
    Keywords: GIK/IfG; Institute for Geosciences, Christian Albrechts University, Kiel
    Type: Dataset
    Format: application/zip, 9 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Horz, Kersten H; Worthington, Tim J; Winn, Kyaw; Stoffers, Peter (2004): Late Quaternary tephra in the New Ireland Basin, Papua New Guinea. Journal of Volcanology and Geothermal Research, 132(1), 73-95, https://doi.org/10.1016/S0377-0273(03)00421-9
    Publication Date: 2024-02-03
    Description: Sediment cores were recovered from the New Ireland Basin, east of Papua New Guinea, in order to investigate the late Quaternary eruptive history of the Tabar-Lihir-Tanga-Feni (TLTF) volcanic chain. Foraminifera d18O profiles were matched to the low-latitude oxygen isotope record to date the cores, which extend back to the early part of d18O Stage 9 (333 ka). Sedimentation rates decrease from 〉10 cm/1000 yr in cores near New Ireland to ~2 cm/1000 yr further offshore. The cores contain 36 discrete ash beds, mostly 1-8 cm thick and interpreted as either fallout or distal turbidite deposits. Most beds have compositionally homogeneous glass shard populations, indicating that they represent single volcanic events. Shards from all ash beds have the subduction-related pattern of strong enrichment in the large-ion lithophile elements relative to MORB, but three distinct compositional groups are apparent: Group A beds are shoshonitic and characterised by 〉1300 ppm Sr, high Ce/Yb and high Nb/Yb relative to MORB, Group B beds form a high-K series with MORB-like Nb/Yb but high Ce/Yb and well-developed negative Eu anomalies, whereas Group C beds are transitional between the low-K and medium-K series and characterised by flat chondrite-normalised REE patterns with low Nb/Yb relative to MORB. A comparison with published data from the TLTF chain, the New Britain volcanic arc and backarc including Rabaul, and Bagana on Bougainville demonstrates that only Group A beds share the distinctive phenocryst assemblage and shoshonitic geochemistry of the TLTF lavas. The crystal- and lithic-rich character of the Group A beds point to a nearby source, and their high Sr, Ce/Yb and Nb/Yb match those of Tanga and Feni lavas. A youthful stratocone on the eastern side of Babase Island in the Feni group is the most probable source. Group A beds younger than 20 ka are more fractionated than the older Group A beds, and record the progressive development of a shallow level magma chamber beneath the cone. In contrast, Group B beds represent glass-rich fallout from voluminous eruptions at Rabaul, whereas Group C beds represent distal glass-rich fallout from elsewhere along the volcanic front of the New Britain arc.
    Keywords: GIK/IfG; Institute for Geosciences, Christian Albrechts University, Kiel
    Type: Dataset
    Format: application/zip, 24 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...