GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Quemener, M., Dayras, M., Frotté, N., Debaets, S., Le Meur, C., Barbier, G., Edgcomb, V., Mehiri, M., & Burgaud, G. Highlighting the biotechnological potential of deep oceanic crust fungi through the prism of their antimicrobial activity. Marine Drugs, 19(8), (2021): 411, https://doi.org/10.3390/md19080411.
    Description: Among the different tools to address the antibiotic resistance crisis, bioprospecting in complex uncharted habitats to detect novel microorganisms putatively producing original antimicrobial compounds can definitely increase the current therapeutic arsenal of antibiotics. Fungi from numerous habitats have been widely screened for their ability to express specific biosynthetic gene clusters (BGCs) involved in the synthesis of antimicrobial compounds. Here, a collection of unique 75 deep oceanic crust fungi was screened to evaluate their biotechnological potential through the prism of their antimicrobial activity using a polyphasic approach. After a first genetic screening to detect specific BGCs, a second step consisted of an antimicrobial screening that tested the most promising isolates against 11 microbial targets. Here, 12 fungal isolates showed at least one antibacterial and/or antifungal activity (static or lytic) against human pathogens. This analysis also revealed that Staphylococcus aureus ATCC 25923 and Enterococcus faecalis CIP A 186 were the most impacted, followed by Pseudomonas aeruginosa ATCC 27853. A specific focus on three fungal isolates allowed us to detect interesting activity of crude extracts against multidrug-resistant Staphylococcus aureus. Finally, complementary mass spectrometry (MS)-based molecular networking analyses were performed to putatively assign the fungal metabolites and raise hypotheses to link them to the observed antimicrobial activities.
    Description: This study was funded by National Science Foundation grants OCE-1658031 to Virginia Edgcomb. Fungal isolates were obtained from the Université de Bretagne Occidentale Culture Collection (UBOCC, Plouzané, France, www.univ-brest.fr/ubocc, accessed date in July 2021) and AmelieWeill is acknowledged here as head of the UBOCC.
    Keywords: Oceanic crust ; Fungi ; Secondary metabolites ; Molecular screening ; Antimicrobial assays
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...