GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Food webs  (1)
  • Predator–prey interactions  (1)
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecological Modelling 261-262 (2013): 43–57, doi:10.1016/j.ecolmodel.2013.04.006.
    Description: Dynamic Green Ocean Models (DGOMs) include different sets of Plankton Functional Types (PFTs) and equations, thus different interactions and food webs. Using four DGOMs (CCSM-BEC, PISCES, NEMURO and PlankTOM5) we explore how predator–prey interactions influence food web dynamics. Using each model's equations and biomass output, interaction strengths (direct and specific) were calculated and the role of zooplankton in modeled food webs examined. In CCSM-BEC the single size-class adaptive zooplankton preys on different phytoplankton groups according to prey availability and food preferences, resulting in a strong top-down control. In PISCES the micro- and meso-zooplankton groups compete for food resources, grazing phytoplankton depending on their availability in a mixture of bottom-up and top-down control. In NEMURO macrozooplankton controls the biomass of other zooplankton PFTs and defines the structure of the food web with a strong top-down control within the zooplankton. In PlankTOM5, competition and predation between micro- and meso-zooplankton along with strong preferences for nanophytoplankton and diatoms, respectively, leads to their mutual exclusion with a mixture of bottom-up and top-down control of the plankton community composition. In each model, the grazing pressure of the zooplankton PFTs and the way it is exerted on their preys may result in the food web dynamics and structure of the model to diverge from the one that was intended when designing the model. Our approach shows that the food web dynamics, in particular the strength of the predator–prey interactions, are driven by the choice of parameters and more specifically the food preferences. Consequently, our findings stress the importance of equation and parameter choice as they define interactions between PFTs and overall food web dynamics (competition, bottom-up or top-down effects). Also, the differences in the simulated food-webs between different models highlight the gap of knowledge for zooplankton rates and predator–prey interactions. In particular, concerted effort is needed to identify the key growth and loss parameters and interactions and quantify them with targeted laboratory experiments in order to bring our understanding of zooplankton at a similar level to phytoplankton.
    Description: This work was supported with funding from Palmer LTER (NSF OPP-0823101) and C-MORE (NSF EF-0424599).
    Keywords: Dynamic Green Ocean Model ; Plankton Functional Types ; Zooplankton ; Food web dynamic ; Predator–prey interactions
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 28 (2014): 181-196, doi:10.1002/2013GB004743.
    Description: The export of organic carbon from the surface ocean by sinking particles is an important, yet highly uncertain, component of the global carbon cycle. Here we introduce a mechanistic assessment of the global ocean carbon export using satellite observations, including determinations of net primary production and the slope of the particle size spectrum, to drive a food-web model that estimates the production of sinking zooplankton feces and algal aggregates comprising the sinking particle flux at the base of the euphotic zone. The synthesis of observations and models reveals fundamentally different and ecologically consistent regional-scale patterns in export and export efficiency not found in previous global carbon export assessments. The model reproduces regional-scale particle export field observations and predicts a climatological mean global carbon export from the euphotic zone of ~6 Pg C yr−1. Global export estimates show small variation (typically 〈 10%) to factor of 2 changes in model parameter values. The model is also robust to the choices of the satellite data products used and enables interannual changes to be quantified. The present synthesis of observations and models provides a path for quantifying the ocean's biological pump.
    Description: D.A.S. and K.O.B. acknowledge support from the National Aeronautics and Space Administration (NNX11AF63G). S.C.D. and S.F.S. acknowledge support from the National Science Foundation through the Center for Microbial Oceanography: Research and Education (C-MORE) (NSF EF-0424599).
    Description: 2014-09-10
    Keywords: Carbon cycle ; Biological pump ; Carbon export ; Remote sensing ; Food webs
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/msword
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...