GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Fisheries  (2)
  • Whale distribution  (1)
  • 1
    facet.materialart.
    Unknown
    In:  frederick.wenzel@noaa.gov | http://aquaticcommons.org/id/eprint/14533 | 403 | 2014-02-14 21:51:39 | 14533 | United States National Marine Fisheries Service
    Publication Date: 2021-06-27
    Description: We describe the food habits of the Sowerby’s beaked whale(Mesoplodon bidens) from observations of 10 individuals taken as bycatch in the pelagic drift gillnet fishery for Swordfish (Xiphias gladius) in the western North Atlantic and 1 stranded individual from Kennebunk, Maine. The stomachs of 8 bycaught whales were intact and contained prey. The diet of these 8 whales was dominated by meso- and benthopelagic fishes that composed 98.5% of the prey items found in their stomachs and cephalopods that accounted for only 1.5% of the number of prey. Otoliths and jaws representing at least 31 fish taxa from 15 families were present in the stomach contents. Fishes, primarily from the families Moridae (37.9% of prey), Myctophidae (22.9%), Macrouridae (11.2%), and Phycidae (7.2%), were present in all 8 stomachs. Most prey were from 5 fish taxa: Shortbeard Codling (Laemonema barbatulum) accounted for 35.3% of otoliths, Cocco’s Lanternfish (Lobianchia gemellarii) contributed 12.9%, Marlin-spike (Nezumia bairdii) composed 10.8%, lanternfishes (Lampanyctus spp.) accounted for 8.4%; and Longfin Hake (Phycis chesteri) contributed 6.7%. The mean number of otoliths per stomach was 1196 (range: 327–3452). Most of the fish prey found in the stomachs was quite small, ranging in length from 4.0 to 27.7 cm. We conclude that the Sowerby’s beaked whales that we examined in this study fed on large numbers of relatively small meso- and benthopelagic fishes that are abundant along the slope and shelf break of the western North Atlantic.
    Keywords: Biology ; Ecology ; Fisheries
    Repository Name: AquaDocs
    Type: article , TRUE
    Format: application/pdf
    Format: application/pdf
    Format: 381-389
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  http://aquaticcommons.org/id/eprint/8971 | 403 | 2012-08-13 15:41:59 | 8971 | United States National Marine Fisheries Service
    Publication Date: 2021-06-30
    Description: We documented depredation by bottlenose dolphins (Tursiops truncatus) in the Florida king mackerel (Scomberomorus cavalla) troll fishery. Between March and June 2003, we conducted 26 interviews of charter and commercial fishermen in Islamorada, Florida, and 23 along Florida’s east coast from Fort Pierce south to Lake Worth Inlet. All fishermen indicated they had observed bottlenose dolphins depredating bait or catch—king mackerel being the species most often taken by dolphins. During on-board observations of depredation between March and June 2003, we found that dolphins took 6% of king mackerel caught by charter fishermen and 20% of fish caught by commercial fishermen. We concluded that depredation by bottlenose dolphin occurs commonly in this fishery and has the potential to incur a significant economic cost to king mackerel fishermen. To address this concern, we conducted preliminary tests of a gear modification designed to reduce depredation in the king mackerel fishery between December 2003 and January 2004. These tests demonstrated that a modification to the outrigger planer will successfully deter bottlenose dolphins from engaging in depredation, without causing a reduction in ca
    Keywords: Biology ; Ecology ; Fisheries
    Repository Name: AquaDocs
    Type: article , TRUE
    Format: application/pdf
    Format: application/pdf
    Format: 343-349
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © Inter-Research, 2006. This article is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Marine Ecology Progress Series 317 (2006): 297-310, doi:10.3354/meps317297.
    Description: The Western Antarctic Peninsula (WAP) is a biologically rich area supporting large standing stocks of krill and top predators (including whales, seals and seabirds). Physical forcing greatly affects productivity, recruitment, survival and distribution of krill in this area. In turn, such interactions are likely to affect the distribution of baleen whales. The Southern Ocean GLOBEC research program aims to explore the relationships and interactions between the environment, krill and predators around Marguerite Bay (WAP) in autumn 2001 and 2002. Bathymetric and environmental variables including acoustic backscattering as an indicator of prey abundance were used to model whale distribution patterns. We used an iterative approach employing (1) classification and regression tree (CART) models to identify oceanographic and ecological variables contributing to variability in humpback Megaptera novaeangliae and minke Balaenoptera acutorstrata whale distribution, and (2) generalized additive models (GAMs) to elucidate functional ecological relationships between these variables and whale distribution. The CART models indicated that the cetacean distribution was tightly coupled with zooplankton acoustic volume backscatter in the upper (25 to 100 m), and middle (100 to 300 m) portions of the water column. Whale distribution was also related to distance from the ice edge and bathymetric slope. The GAMs indicated a persistent, strong, positive relationship between increasing zooplankton volume and whale relative abundance. Furthermore, there was a lower limit for averaged acoustic volume backscatter of zooplankton below which the relationship between whales and prey was not significant. The GAMs also supported an annual relationship between whale distribution, distance from the ice edge and bathymetric slope, suggesting that these are important features for aggregating prey. Our results demonstrate that during the 2 yr study, whales were consistently and predictably associated with the distribution of zooplankton. Thus, humpback and minke whales may be able to locate physical features and oceanographic processes that enhance prey aggregation.
    Description: Resources for this project were provided by the National Science Foundation Office of Polar Programs grant OPP-9910307 and the International Whaling Commission. This work represents a portion of A.S.F.’s dissertation, funded by a Duke University Marine Laboratory Fellowship.
    Keywords: Whale distribution ; Zooplankton ; Ice edge ; Antarctica ; SO GLOBEC ; CART ; GAM
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...