GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 61 (1986), S. 386-394 
    ISSN: 1432-1106
    Keywords: Eye movement ; Saccades ; Dynamic overshoot ; Post-saccadic drift ; Active braking pulse
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Dynamic overshoot is a small saccade that follows a main saccade, in the opposite direction, with no delay. To re-examine prior reports of dynamic overshoot, the properties of dynamic overshoot were studied in six normal subjects. The postsaccadic drift of eye movements was studied as well. Horizontal eye movements were recorded with the magnetic-field/search-coil method. System noise level was 0.05 deg. Dynamic overshoot occurred with a frequency of about 13% and was more frequent for saccades 10 deg or less. Its mean size was 0.15 deg and its peak velocity showed it to be saccadic in nature. Binocular recordings for three subjects showed that when dynamic overshoot occurred it was almost always in the abducting eye which also had the least post-saccadic drift. The adducting eye seldom had dynamic overshoot and consistently had a more pronounced post-saccadic drift, almost always in the onward direction. We suggest that, at the end of a saccade, the eye normally is brought to rest by a braking pulse and dynamic overshoot occurs when the braking pulse is accidentally too large. It would appear to serve no useful purpose. Why dynamic overshoot is monocular and coincides with the eye having less post-saccadic drift is unclear.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 64 (1986), S. 208-216 
    ISSN: 1432-1106
    Keywords: Eye movement ; Vestibulo-ocular reflex ; Semicircular canals ; Otolith organs
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary For the vestibulo-ocular reflex (VOR) to function properly, namely to ensure a stable retinal image under all circumstances, it should be able to take into account varying eye positions in the orbit and varying orientations of the head with respect to the axis about which it is rotating. We tested this capability by quantifying the gain and the time constant of the horizontal component of the VOR during rotation about an earth vertical axis when the line of sight (optical axis) was moved out of the plane of head rotation — either by rotating the eyes up or down in the orbit or by pitching the head up or down with respect to earth-horizontal. In either case the gain of the horizontal component of the VOR was attenuated precisely by the cosine of the angle made between the optical axis and the plane of head rotation. Furthermore, if the head was pitched up or down but the eye rotated oppositely in the orbit so as to keep the line of sight in the plane of head rotation the gain of the horizontal component of the VOR was the same value as with the head and eyes both straight ahead. In contrast, the time constant of the VOR varied only as a function of the orientation of the head and not as a function of eye position in the orbit. During rotation about an earth vertical axis, the time constant was longest (about 18 s) when the head was pitched forward to place the lateral canals near earth-horizontal and shortest (about 11 s) when the head was pitched backward to place the vertical canals near earth-horizontal. Finally, since during rotation in yaw the pattern of stimulation of the lateral and vertical semicircular canals varies with different head orientations one can use measurements of the horizontal component of the VOR, under varying degrees of pitch of the head, to calculate the relative ability of the lateral and vertical semicircular canals to transduce head velocity.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...