GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Evapotranspiration partitioning  (1)
Document type
Keywords
Years
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Plant, Cell & Environment 34 (2011): 1761-1775, doi:10.1111/j.1365-3040.2011.02372.x.
    Description: The δ18O and δD composition of water pools (leaf, root, standing water, and soil water) and fluxes (transpiration, evaporation) were used to understand ecohydrological processes in a managed Typha latifolia L. freshwater marsh. We observed isotopic steady state transpiration and deep rooting in Typha. The isotopic mass balance of marsh standing water showed that evaporation accounted for 3% of the total water loss, transpiration accounted for 17%, and subsurface drainage accounted for the majority, 80%. There was a vertical gradient in water vapor content and isotopic composition within and above the canopy sufficient for constructing an isotopic mass balance of water vapor during some sampling periods. During these periods, the proportion of transpiration in evapotranspiration (T/ET) was between 56 ± 17% to 96 ± 67%, and the estimated error was relatively high (〉37%) due to non-local, background sources in vapor. Independent estimates of T/ET using eddy covariance measurements yielded similar mean values during the Typha growing season. The various T/ET estimates agreed that transpiration was the dominant source of marsh vapor loss in the growing season. The isotopic mass balance of water vapor yielded reasonable results, but the mass balance of standing water provided more definitive estimates of water losses.
    Description: This research was supported by a National Science Foundation Graduate Fellowship.
    Keywords: Transpiration ; Evaporation ; Craig–Gordon enrichment ; Evapotranspiration partitioning ; Typha latifolia ; Stable isotopes ; Isotopic steady-state
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...