GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Internal transcribed spacer (ITS)  (2)
  • Euprymna scolopes  (1)
  • 1
    ISSN: 1432-072X
    Keywords: Key wordsVibrio fischeri ; Spontaneous variant ; Pleiotropic variant ; Dimorphism ; Symbiosis ; Sepiolid squid ; Euprymna scolopes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Vibrio fischeri strains isolated from light organs of the sepiolid squid Euprymna scolpes are non-visibly luminous and fast growing in laboratory culture, whereas in the symbiosis they are visibly luminous and slow growing. A spontaneous, visibly luminous, slow-growing variant was isolated from a laboratory culture of the squid-symbiotic V. fischeri strain ES114. Taxonomic and DNA-homology analyses demonstrated that the variant was V. fischeri and was very similar to the original form. However, the variant grew at one-fourth the rate of the original form, produced 30,000-fold more luminescence, induced luminescence at a lower cell density, and produced a higher level of V. fischeri luminescence autoinducer. Regulation of luminescence, nonetheless, was similar in the two forms and typical of V. fischeri with respect to responses to autoinducer, glucose, the iron chelator ethylenediamine-di(o-hydroxyphenyl acetic acid), and 3′:5′-cyclic AMP. Compared to the original form, cells of the variant were smaller, exhibited from zero to two polar, sheathed flagella instead of a tuft of three to eight flagella, produced a deeper yellow-orange pigment, did not acidify media containing glycerol, and produced a more distinct pellicle. The two forms also differed in the levels of several outer membrane and soluble proteins. These results establish a distinctive physiological, morphological, and biochemical dimorphism in V. fischeri ES114 in which the variant exhibits several traits similar to V. fischeri cells in the symbiotic state. The variant and its conversion from the original form in laboratory culture may provide insight into the properties of V. fischeri cells in the symbiosis and may serve as a model for elucidating the mechanism for their pleiotropic conversion upon colonization of the squid.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Society for Microbiology, 2002. This article is posted here by permission of American Society for Microbiology for personal use, not for redistribution. The definitive version was published in Applied and Environmental Microbiology 68 (2002): 2236-2245, doi:10.1128/AEM.68.5.2236-2245.2002.
    Description: The genetic diversity of Trichodesmium spp. from natural populations (off Bermuda in the Sargasso Sea and off North Australia in the Arafura and Coral Seas) and of culture isolates from two regions (Sargasso Sea and Indian Ocean) was investigated. Three independent techniques were used, including a DNA fingerprinting method based on a highly iterated palindrome (HIP1), denaturing gradient gel electrophoresis of a hetR fragment, and sequencing of the internal transcribed spacer (ITS) of the 16S-23S rDNA region. Low genetic diversity was observed in natural populations of Trichodesmium spp. from the two hemispheres. Culture isolates of Trichodesmium thiebautii, Trichodesmium hildebrandtii, Trichodesmium tenue, and Katagnymene spiralis displayed remarkable similarity when these techniques were used, suggesting that K. spiralis is very closely related to the genus Trichodesmium. The largest genetic variation was found between Trichodesmium erythraeum and all other species of Trichodesmium, including a species of Katagnymene. Our data obtained with all three techniques suggest that there are two major clades of Trichodesmium spp. The HIP1 fingerprinting and ITS sequence analyses allowed the closely related species to be distinguished. This is the first report of the presence of HIP1 in marine cyanobacteria.
    Description: This work was funded by the Swedish Foundation for International Co-operation in Research and Higher Education (STINT) (B.B.), the Swedish Natural Science Research Council (B.B.), and the Swedish Institute (K.M.O.).
    Keywords: Trichodesmium spp. ; Highly iterated palindrome (HIP1) fingerprinting ; Denaturing gradient gel electrophoresis (DGGE) ; Internal transcribed spacer (ITS)
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 1318345 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © American Society for Microbiology, 2002. This article is posted here by permission of American Society for Microbiology for personal use, not for redistribution. The definitive version was published in Applied and Environmental Microbiology 68 (2002): 1180-1191, doi:10.1128/AEM.68.3.1180-1191.2002.
    Description: Cultured isolates of the marine cyanobacteria Prochlorococcus and Synechococcus vary widely in their pigment compositions and growth responses to light and nutrients, yet show greater than 96% identity in their 16S ribosomal DNA (rDNA) sequences. In order to better define the genetic variation that accompanies their physiological diversity, sequences for the 16S-23S rDNA internal transcribed spacer (ITS) region were determined in 32 Prochlorococcus isolates and 25 Synechococcus isolates from around the globe. Each strain examined yielded one ITS sequence that contained two tRNA genes. Dramatic variations in the length and G+C content of the spacer were observed among the strains, particularly among Prochlorococcus strains. Secondary-structure models of the ITS were predicted in order to facilitate alignment of the sequences for phylogenetic analyses. The previously observed division of Prochlorococcus into two ecotypes (called high and low-B/A after their differences in chlorophyll content) were supported, as was the subdivision of the high-B/A ecotype into four genetically distinct clades. ITS-based phylogenies partitioned marine cluster A Synechococcus into six clades, three of which can be associated with a particular phenotype (motility, chromatic adaptation, and lack of phycourobilin). The pattern of sequence divergence within and between clades is suggestive of a mode of evolution driven by adaptive sweeps and implies that each clade represents an ecologically distinct population. Furthermore, many of the clades consist of strains isolated from disparate regions of the world's oceans, implying that they are geographically widely distributed. These results provide further evidence that natural populations of Prochlorococcus and Synechococcus consist of multiple coexisting ecotypes, genetically closely related but physiologically distinct, which may vary in relative abundance with changing environmental conditions.
    Description: This work was supported by an NSF graduate fellowship to G.R., by NASA grant NAG5-3727 and NSF grant OCE9820035 to S.W.C., and by NSF grant OCE9315895 to D.L.D. and J.B.W.
    Keywords: Marine cyanobacteria ; Prochlorococcus ; Synechococcus ; Internal transcribed spacer (ITS) ; Coexisting ecotypes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 370041 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...