GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-10-26
    Description: Background Despite evidence suggesting that early metabolic dysfunction impacts cardiovascular disease risk, current guidelines focus on risk assessments later in life, missing early transitions in metabolic risk that may represent opportunities for averting the development of cardiovascular disease. Methods and Results In 4420 young adults in the Coronary Artery Risk Development in Young Adults (CARDIA) study, we defined a "metabolic" risk score based on components of the Third Report of the Adult Treatment Panel's definition of metabolic syndrome. Using latent class trajectory analysis adjusted for sex, race, and time-dependent body mass index, we identified 6 distinct metabolic trajectories over time, specified by initial and final risk: low-stable, low-worsening, high-stable, intermediate-worsening, intermediate-stable, and high-worsening. Overall, individuals gained weight over time in CARDIA with statistically but not clinically different body mass index trend over time. Dysglycemia and dyslipidemia over time were highest in initially high or worsening trajectory groups. Divergence in metabolic trajectories occurred in early adulthood (before age 40), with 2 of 3 individuals experiencing an increase in metabolic risk over time. Membership in a higher-risk trajectory (defined as initially high or worsening over time) was associated with greater prevalence and extent of coronary artery calcification, left ventricular mass, and decreased left ventricular strain at year 25. Importantly, despite similar rise in body mass index across trajectories over 25 years, coronary artery calcification and left ventricular structure and function more closely tracked risk factor trajectories. Conclusions Transitions in metabolic risk occur early in life. Obesity-related metabolic dysfunction is related to subclinical cardiovascular phenotypes independent of evolution in body mass index, including coronary artery calcification and myocardial hypertrophy and dysfunction.
    Keywords: Epidemiology, Lifestyle, Risk Factors
    Electronic ISSN: 2047-9980
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-11-05
    Description: BackgroundDespite evidence suggesting that early metabolic dysfunction impacts cardiovascular disease risk, current guidelines focus on risk assessments later in life, missing early transitions in metabolic risk that may represent opportunities for averting the development of cardiovascular disease.Methods and ResultsIn 4420 young adults in the Coronary Artery Risk Development in Young Adults (CARDIA) study, we defined a “metabolic” risk score based on components of the Third Report of the Adult Treatment Panel's definition of metabolic syndrome. Using latent class trajectory analysis adjusted for sex, race, and time‐dependent body mass index, we identified 6 distinct metabolic trajectories over time, specified by initial and final risk: low‐stable, low‐worsening, high‐stable, intermediate‐worsening, intermediate‐stable, and high‐worsening. Overall, individuals gained weight over time in CARDIA with statistically but not clinically different body mass index trend over time. Dysglycemia and dyslipidemia over time were highest in initially high or worsening trajectory groups. Divergence in metabolic trajectories occurred in early adulthood (before age 40), with 2 of 3 individuals experiencing an increase in metabolic risk over time. Membership in a higher‐risk trajectory (defined as initially high or worsening over time) was associated with greater prevalence and extent of coronary artery calcification, left ventricular mass, and decreased left ventricular strain at year 25. Importantly, despite similar rise in body mass index across trajectories over 25 years, coronary artery calcification and left ventricular structure and function more closely tracked risk factor trajectories.ConclusionsTransitions in metabolic risk occur early in life. Obesity‐related metabolic dysfunction is related to subclinical cardiovascular phenotypes independent of evolution in body mass index, including coronary artery calcification and myocardial hypertrophy and dysfunction.
    Keywords: Epidemiology, Lifestyle, Risk Factors
    Electronic ISSN: 2047-9980
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...