GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Newark :John Wiley & Sons, Incorporated,
    Schlagwort(e): Soils-Environmental aspects. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (352 pages)
    Ausgabe: 1st ed.
    ISBN: 9781119480471
    Serie: Wiley Series Sponsored by IUPAC in Biophysico-Chemical Processes in Environmental Systems Series
    Sprache: Englisch
    Anmerkung: Cover -- Title Page -- Copyright Page -- Contents -- Series Preface -- Preface -- List of Contributors -- Chapter 1 Introduction: Working Across Scales to Project Soil Biogeochemical Responses to Climate -- 1.1. Context -- 1.2. Soil Responses to Environmental Conditions at Diverse Scales: Organic Matter Transformations and Feedbacks to Climate -- 1.2.1. Organic Matter at the Microscale -- 1.2.2. Organic Matter at the Mesocosm Scale -- 1.2.3. Organic Matter at the Plot and Decadal Scale -- 1.2.4. Organic Matter at Ecosystem to Landscape Scales Across Years to Decades -- 1.3. Recent Empirical Investigations of Soil Responses to Environmental Conditions at Diverse Scales: Mineral Weathering -- 1.3.1. Mineral Weathering at the Column or Mesocosm Scale -- 1.3.2. Mineral Weathering at the Ecosystem to Landscape Scale Across Diverse Temporal Scales -- 1.4. Cross-Scale Discrepancies: Two Examples of Nonlinearities That Challenge Predictive Abilities -- 1.5. Models as a Means of Integrating Across Disciplines and Scales -- 1.6. Conclusions -- Acknowledgments -- References -- SECTION 1 Molecular-scale Processes and Critical Reactions -- Chapter 2 The Science and Semantics of "Soil Organic Matter Stabilization" -- 2.1. The Cycling of Organic Matter in Soil -- 2.2. What Is "Stability?" -- 2.2.1. The Paradigm of Chemical Stability (I): Humification and Humic Substances -- 2.2.2. The Paradigm of Chemical Stability (II): Litter Quality -- 2.2.3. The Paradigm of Chemical Stability (III): Molecular Complexity and Activation Energies -- 2.2.4. The Paradigm of Chemical Stability (IV): Plastics and Black Carbon -- 2.3. The Paradigm of Sorptive Protection/Interactions -- 2.4. The Paradigm of Accessibility: Aggregation -- 2.5. The Paradigm of Accessibility: How Location Matters -- 2.6. Microbial Metabolic Performance as a Factor in Soil Carbon Cycling. , 2.7. Habitat Properties as Logistical Constraints -- 2.8. Habitat Properties and Reactant Supply -- 2.8.1. Habitat Properties Determine the Thermodynamics of Decomposition -- 2.8.2. Decomposition and Decomposer Needs: Microbial Carbon Use Efficiency -- 2.8.3. Decomposition and Decomposer Needs: Resource Stoichiometry -- 2.8.4. Plants as an Interested Party in Soil Organic Matter Decomposition -- 2.9. Conclusions -- References -- Chapter 3 Interconnecting Soil Organic Matter with Nitrogen and Phosphorus Cycling -- 3.1. Soil Organic Matter: The Key Player for Controlling Nutrient Cycling -- 3.2. Nitrogen -- 3.2.1. Introduction -- 3.2.2. Biological N Fixation -- 3.2.3. Organic N Stabilization and Depolymerization -- 3.2.4. Microbial Utilization of N in Soils -- 3.2.5. Microbial N Oxidation and Reduction -- 3.2.6. Plant N Uptake as a Function of Resource Availability -- 3.3. Phosphorus -- 3.3.1. Introduction -- 3.3.2. Abiotic Processes -- 3.3.3. Organic P Dynamics and P Recycling -- 3.3.4. Microbial P in Soil -- 3.3.5. Plant and Microbial Strategies for P Uptake -- 3.3.6. Plant P Uptake as Related to Internal Plant Nutritional Status and Soil P Availability -- 3.4. Conclusions -- References -- Chapter 4 Plant-Derived Macromolecules in the Soil -- 4.1. Introduction -- 4.2. Plant Macromolecules as Inputs into the Soil -- 4.2.1. Cellulose and Hemicellulose -- 4.2.2. Lignin -- 4.2.3. Proteins -- 4.2.4. Tannins and Other Polyphenols -- 4.2.5. Cutin, Suberin, and Free Extractable Lipids -- 4.2.6. Other Molecules -- 4.3. Fraction-Specific Molecular Analyses -- 4.3.1. Biomarkers -- 4.3.2. Compound-specific Isotope Analysis (CSIA) -- 4.3.3. Other Complementary Methods -- 4.4. Fate of Plant-Derived Compounds in the Soil -- 4.4.1. Microbial Degradation -- 4.4.2. Abiotic Degradation -- 4.4.3. Movement in the Soil Through Leaching Processes. , 4.4.4. Preservation Mechanisms -- 4.4.5. Turnover of Plant-Derived Molecules -- 4.5. Root- Versus Shoot-Derived Carbon in the Soil -- 4.6. Conclusions -- References -- Chapter 5 Microbe-Biomolecule-Mineral Interfacial Reactions -- 5.1. Introduction -- 5.2. Microbial Colonization of Rock -- 5.2.1. Initial Colonizers of Fresh Mineral Substrate -- 5.3. Mechanisms of Cell Adhesion to Mineral Surfaces -- 5.3.1. Bacterial Surface Geochemistry -- 5.3.2. Bacterial Adhesion at Mineral Surfaces -- 5.4. Mineral Surface Reactions of Extracellular Biomolecules -- 5.4.1. Composition of Extracellular Polymeric Substances (EPS) -- 5.4.2. Adsorption and Fractionation of EPS at Mineral Surfaces -- 5.5. Heteroaggregate Formation -- 5.6. Conclusions and Future Outlook -- References -- SECTION 2 Ecosystem-scale Studies of Ecological Hotspots -- Chapter 6 Greenhouse Gas Emissions in Wetland Rice Systems: Biogeochemical Processes and Management -- 6.1. Introduction -- 6.2. Carbon Biogeochemistry -- 6.2.1. Anaerobic C Pathways -- 6.2.3. Dissolved Organic C -- 6.2.4. CH4 Production, Consumption, and Emission -- 6.2.5. Mitigation Strategies -- 6.3. N Cycles -- 6.3.1. Biogeochemical Pathways -- 6.3.2. N2O Production, Consumption, and Emission -- 6.4. Future Directions -- References -- Chapter 7 The Changing Biogeochemical Cycles of Tundra -- 7.1. Introduction -- 7.2. The Changing Tundra Carbon Cycle -- 7.2.1. Soil Carbon Accumulation -- 7.2.2. Carbon Balance -- 7.2.3. Carbon Inputs -- 7.2.4. Carbon Outputs: CO2 -- 7.2.5. Carbon Outputs: Methane -- 7.3. Changing Tundra Nutrient Cycles -- 7.3.1. Nutrient Limitation -- 7.3.2. Nutrient Stocks -- 7.3.3. The Changing Nitrogen Cycle -- 7.3.4. The Changing Phosphorus Cycle -- 7.3.5. Nutrient Leaching -- 7.3.6. Effects of Fire on Nutrient Cycles -- 7.4. Future Projections -- 7.5. Future Research Directions -- References. , Chapter 8 Linking Sources, Transformation, and Loss of Phosphorus in the Soil-Water Continuum in a Coastal Environment -- 8.1. Phosphorus: An Essential Nutrient Turned into a Contaminant -- 8.2. Transformation of Phosphorus in Soils -- 8.2.1. Transformation of P Pools in Soils Impacted by Agricultural P Loading -- 8.2.2. Formation of Residual and Recalcitrant P Pools in Soils -- 8.3. Surface and Subsurface Flow of Phosphorus from Agricultural Soils to Open Water -- 8.4. Transport of Phosphorus in the Main Channel and Export to Open Waters -- 8.5. Source Tracking of P Released from Soils and Upland Watershed -- 8.6. Implication and Future Research Directions -- Acknowledgments -- References -- Chapter 9 Deep Soil Carbon -- 9.1. Introduction -- 9.2. How Much Carbon Is Stored in the Subsoil? -- 9.3. How Does Carbon Accumulate at Depth? -- 9.4. Factors Contributing to Deep Soil Carbon Persistence -- 9.4.1. Climate -- 9.4.2. Parent Material and Time -- 9.4.3. Relief and Soil Redistribution -- 9.4.4. Biota -- 9.5. Vulnerability of Deep Soil Carbon -- 9.5.1. Land Management -- 9.5.2. Climate Change -- 9.5.3. Disturbance of Buried Soils -- 9.6. Improving Predictions of Deep Soil Carbon -- 9.7. Conclusions -- Acknowledgments -- References -- SECTION 3 Modeling Biogeochemical Cycles and Improvement of Ecosystem Resilience -- Chapter 10 Soil Carbon Dynamics and Responses to Environmental Changes -- 10.1. Introduction -- 10.2. Soil C Inventory -- 10.2.1. Top and Deep Soil C Inventory -- 10.2.2. Global Soil C Stock -- 10.2.3. Permafrost - A Huge Soil C Pool -- 10.2.4. Soil C Inventory Methods -- 10.3. Soil C Dynamics -- 10.3.1. Soil C Input Processes -- 10.3.2. Soil C Output Processes -- 10.3.3. Depth-dependent Soil C Balance -- 10.4. Climate Warming and Soil Carbon -- 10.4.1. Temperature Sensitivity of Different Soil Organic C Pools. , 10.4.2. Thermal Acclimation of Soil Organic C Decomposition -- 10.4.3. Soil Organic C Fraction, Composition, and Stability -- 10.5. Precipitation Change and Soil Carbon -- 10.5.1. Precipitation Amounts -- 10.5.2. Seasonal Rainfall Redistribution -- 10.5.3. Extremes and Precipitation Variability -- 10.5.4. Multifactor and Long-term Experiments -- 10.6. Nitrogen Deposition and Soil Carbon -- 10.6.1. Effects of N Deposition on Quantity and Quality of Plant C Input to Soil -- 10.6.2. Effects Caused by Community Composition Changes -- 10.6.3. Effects of N Deposition on Soil Microbial Activity -- 10.6.4. Effects of N Deposition on Soil Physicochemical Properties -- 10.7. Uncertainties in Modeling Soil C Dynamics -- 10.7.1. Model Structures -- 10.7.2. Poor Representation of Microbial Control on Soil C Cycles -- 10.7.3. Poor Representation of Vertical Soil C Cycles in ESMs -- 10.7.4. Underestimated Soil C Turnover Time in ESMs -- 10.8. Outlook: Neglected Facts and Future Research Directions -- 10.8.1. Neglected Facts About Permafrost Processes -- 10.8.2. Neglected Facts About Human Interferences -- 10.8.3. Neglected Facts About Phosphorus Processes -- 10.9. Conclusions -- References -- Chapter 11 Next-generation Soil Biogeochemistry Model Representations: A Proposed Community Open-source Model Farm (BeTR-S) -- 11.1. Introduction -- 11.2. Proposed SOM Model Structure -- 11.2.1. Litter Input and Polymeric OM Hydrolysis (P1) -- 11.2.2. Microbial Physiology, Microbial Population Dynamics, and Macronutrient Controls (P2) -- 11.2.3. Trophic Interactions and Competition (P3) -- 11.2.4. Mineral-Organic Interactions (P4) -- 11.2.5. Soil Chemistry: Cation Exchange Capacity, pH, Redox, and Salinity (P5) -- 11.2.6. Rhizosphere-Bulk Soil Interactions (P6) -- 11.2.7. Soil Structure, Aggregation, Transport (P7). , 11.3. Mathematical Integration and Solution in the BeTR-S Model Farm.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Newark :John Wiley & Sons, Incorporated,
    Schlagwort(e): Environmental chemistry. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (341 pages)
    Ausgabe: 1st ed.
    ISBN: 9780470511190
    Serie: Series on Analytical and Physical Chemistry of Environmental Systems Series ; v.11
    DDC: 577.14
    Sprache: Englisch
    Anmerkung: Intro -- Biophysical Chemistry of Fractal Structures and Processes in Environmental Systems -- Contents -- About the Editors -- List of Contributors -- Series Preface -- Preface -- 1 Introduction to the Study of Environmental Fractals -- 2 Introduction to Fractal Geometry, Fragmentation Processes and Multifractal Measures: Theory and Operational Aspects of their Application to Natural Systems -- 3 Methods and Techniques for Fractal Analysis of Environmental Systems -- 4 Fractal Structures and Mechanisms in Coagulation/Flocculation Processes in Environmental Systems: Theoretical Aspects -- 5 Fractal Mechanisms in Coagulation/Flocculation Processes in Environmental Systems -- 6 Fractal Approach to Adsorption/Desorption Processes on Environmental Surfaces -- 7 Applications of Fractals in the Study of Humic Materials -- 8 Fractal Geometry and Microorganisms in the Environment -- 9 Fractal Geometry of Aerosol Particles -- Index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    Newark :John Wiley & Sons, Incorporated,
    Schlagwort(e): Bioorganic chemistry. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (905 pages)
    Ausgabe: 1st ed.
    ISBN: 9780470494943
    Serie: Wiley Series Sponsored by IUPAC in Biophysico-Chemical Processes in Environmental Systems Series ; v.2
    DDC: 577/.14
    Sprache: Englisch
    Anmerkung: Intro -- BIOPHYSICO-CHEMICAL PROCESSES INVOLVING NATURAL NONLIVING ORGANIC MATTER IN ENVIRONMENTAL SYSTEMS -- CONTENTS -- Series Preface -- Preface -- About the Editors -- List of Contributors -- 1 Evolution of Concepts of Environmental Natural Nonliving Organic Matter -- 2 Formation Mechanisms of Humic Substances in the Environment -- 3 Organo-Clay Complexes in Soils and Sediments -- 4 The Effect of Organic Matter Amendment on Native Soil Humic Substances -- 5 Carbon Sequestration in Soil -- 6 Storage and Turnover of Organic Matter in Soil -- 7 Black Carbon and Thermally Altered (Pyrogenic) Organic Matter: Chemical Characteristics and the Role in the Environment -- 8 Biological Activities of Humic Substances -- 9 Role of Humic Substances in the Rhizosphere -- 10 Dissolved Organic Matter (DOM) in Natural Environments -- 11 Marine Organic Matter -- 12 Natural Organic Matter in Atmospheric Particles -- 13 Separation Technology as a Powerful Tool for Unfolding Molecular Complexity of Natural Organic Matter and Humic Substances -- 14 Analytical Pyrolysis and Soft-Ionization Mass Spectrometry -- 15 Nuclear Magnetic Resonance Analysis of Natural Organic Matter -- 16 EPR, FTIR, Raman, UV-Visible Absorption, and Fluorescence Spectroscopies in Studies of NOM -- 17 Synchrotron-Based Near-Edge X-Ray Spectroscopy of NOM in Soils and Sediments -- 18 Thermal Analysis for Advanced Characterization of Natural Nonliving Organic Materials -- Index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    Newark :John Wiley & Sons, Incorporated,
    Schlagwort(e): Nanoparticles--Toxicology. ; Nanoparticles--Environmental aspects. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (509 pages)
    Ausgabe: 1st ed.
    ISBN: 9781119275831
    Serie: Wiley Series Sponsored by IUPAC in Biophysico-Chemical Processes in Environmental Systems Series
    Sprache: Englisch
    Anmerkung: Intro -- Engineered Nanoparticles and the Environment -- Contents -- Series Preface -- Preface -- List of Contributors -- PART I Synthesis, Environmental Application, Detection, and Characterization of Engineered Nanoparticles -- 1 Challenges Facing the Environmental Nanotechnology Research Enterprise -- 1.1 Introduction -- 1.1.1 Environmental Applications of Engineered Nanoparticles -- 1.1.2 Environmental Implications of Engineered Nanoparticles -- 1.2 Current Challenges in Environmental Nanotechnology -- 1.2.1 Physicochemical Transformations of Nanomaterials -- 1.2.2 Nanometrology in Environmental Systems -- 1.2.3 Nanotoxicology: Experimental Approaches and Modeling -- 1.2.4 Exposure Modeling for Risk Assessment -- 1.3 Conclusions -- References -- 2 Engineered Nanoparticles for Water Treatment Application -- 2.1 Introduction: an Emerging Water Problem -- 2.1.1 Global Water Scarcity -- 2.1.2 Global Water Contamination -- 2.2 Water Purification Processes Using Nanoparticles -- 2.2.1 Nano-Sized Adsorbents -- 2.2.2 Adsorption of Water Pollutants Using Nanoparticles -- 2.3 Conclusions and Future Perspectives -- References -- 3 Mass Spectrometric Methods for Investigating the Influence of Surface Chemistry on the Fate of Core-Shell Nanoparticles in Biological and Environmental Samples -- 3.1 Introduction -- 3.2 Core-Shell Nanoparticles -- 3.2.1 Nanoparticle Definitions -- 3.2.2 Gold Nanoparticle Synthesis -- 3.2.3 Nanoparticle Surface Chemistry Design -- 3.3 Effect of Surface Chemistry on Nanoparticle Uptake -- 3.3.1 Nanoparticle Uptake into Cells -- 3.3.2 Nanoparticle Uptake and Distributions in Fish -- 3.3.3 Nanoparticle Uptake and Distributions in Plants -- 3.4 Laser DesorptionIonization Mass Spectrometry for Tracking Nanoparticles in Complex Mixtures -- 3.4.1 Mass Spectrometry -- 3.4.2 LDI-MS of Nanoparticles. , 3.4.3 Scope of the LDI-MS Method for Detecting Other Core-Shell Nanoparticles -- 3.4.4 Multiplexed Analysis of Nanoparticles by LDI-MS -- 3.4.5 Monitoring Nanoparticle Monolayer Stability in Biological Samples -- 3.5 Summary and Conclusions -- References -- 4 Separation and Analysis of Nanoparticles (NP) in Aqueous Environmental Samples -- 4.1 Introduction -- 4.2 Major Challenges -- 4.2.1 Low Concentration of Engineered NP -- 4.2.2 Similarity between Engineered, Natural, and Incidential NP -- 4.2.3 Associations of Engineered NP with (Nanoscale) Colloids -- 4.3 Different Approaches to Quantify Engineered NP in Environmental Matrices -- 4.3.1 Combination of "Generic" Analytical Techniques Applied after Enrichment and Separation of Engineered NP -- 4.3.2 Combination of "Specific" Analytical Techniques Applied to Bulk Samples -- 4.4 Initial Sample Preparation for Engineered NP -- 4.4.1 Sedimentation Combined with Stepwise Centrifugation -- 4.4.2 Cross-Flow/Tangential-Flow Filtration -- 4.4.3 Split Flow Thin Cell Fractionation -- 4.5 Sophisticated Sample Preparation for Engineered NP -- 4.5.1 Field-Flow Fractionation -- 4.5.2 Density-Gradient and Analytical Ultracentrifugation -- 4.5.3 Ionic Liquids, Cloud Point Extraction, and Ionic Exchange Resin -- 4.5.4 Chromatographic Methods -- 4.5.5 Electrokinetic Methods -- 4.6 Engineered NP in Different Environmental Compartments (Water, Sludge, Soils, Sediment) -- 4.6.1 Detecting Spiked Engineered NP in Environmental Matrices -- 4.6.2 Detecting "Real" Engineered NP in Environmental Matrices -- 4.7 Future Trends and Demands -- 4.8 List of Abbreviations -- References -- 5 Nanocatalysts for Groundwater Remediation -- 5.1 Organohalides and Nitrates: Common Grounwater Contaminants -- 5.1.1 Introduction to Groundwater -- 5.1.2 Introduction to Organohalides and Nitrate. , 5.2 Conventional Physicochemical Remediation Methods -- 5.2.1 Pump-and-Treat Ex Situ Methods -- 5.2.2 In Situ Methods -- 5.2.3 Biological Remediation -- 5.3 Nanocatalyzed Degradation of Aqueous Compounds -- 5.3.1 Reductive Nanocatalysts for Aqueous Organohalide and Nitrate Remediation -- 5.3.2 Oxidative Photocatalysts for Aqueous Organohalide Remediation -- 5.4 Future Work and Conclusions -- 5.4.1 Emerging Contaminants to Consider -- 5.4.2 New Catalysts to Meet Emerging Challenges -- References -- PART II Environmental Release, Processes, and Modeling of Engineered Nanoparticles -- 6 Properties, Sources, Pathways, and Fate of Nanoparticles in the Environment -- 6.1 Introduction -- 6.2 Nanoparticle Classification -- 6.2.1 Definitions -- 6.2.2 Natural Nanoparticles -- 6.2.3 Engineered Nanoparticles -- 6.3 Sources of Engineered Nanoparticles in the Environment -- 6.4 Behavior and Fate of Engineered Nanoparticles -- 6.4.1 Fate in Water -- 6.4.2 Fate in Soil -- 6.5 Conclusions -- References -- 7 Environmental Exposure Modeling Methods for Engineered Nanomaterials -- 7.1 Introduction -- 7.1.1 Focus of Chapter -- 7.2 Current Decision Support Guidance and Software: Place of Nanomaterials -- 7.2.1 Case Study 1: European Chemical Agency Guidance and the European Union System for the Evaluation of Substances -- 7.2.2 Case Study 2: Specific Advice on Fulfilling Information Requirements for Nanomaterials under REACH (RIP-oN 2) -- 7.2.3 Case Study 3: Forum for the Co-ordination of Pesticide Fate Models and Their Use Models -- 7.2.4 Regulatory Models: Conclusions -- 7.3 Representation of Nano-Specific Data for Modeling Purposes -- 7.3.1 Initial Material Characteristics -- 7.3.2 Environmental Fate and Behavior -- 7.3.3 Material Characterization at Key Exposure Points -- 7.3.4 Data Handling -- 7.3.5 Variability -- 7.3.6 Uncertainty -- 7.3.7 Unknowns/Data Gaps. , 7.3.8 Categorization -- 7.4 Modeling Techniques: Describing The Fate and Flow of Nanomaterials -- 7.4.1 Material Flow Analysis -- 7.4.2 Chemical Fate Modeling -- 7.4.3 Modeling Techniques: Conclusions -- 7.5 Future Data Requirements for The Exposure Modeling of Nanomaterials -- 7.5.1 Summary and Conclusions -- References -- 8 Aggregation Kinetics and Fractal Dimensions of Nanomaterials in Environmental Systems -- 8.1 Introduction -- 8.2 Theoretical Framework -- 8.2.1 Collisions Between Uncharged Particles -- 8.2.2 Incorporating Surface Charge in Collision -- 8.2.3 van Der Waals Forces and Attachment -- 8.2.4 DLVO Theory Capturing Charged Particle Aggregation -- 8.2.5 Attachment Efficiency -- 8.2.6 Non-DLVO Interactions -- 8.2.7 Fractal Dimension -- 8.3 Common Experimental Techniques -- 8.3.1 Coulter Counters -- 8.3.2 Scattering Techniques -- 8.4 State of Nanoparticle Aggregation Studies -- 8.4.1 Role of Background Chemistry (Ionic Strength, pH, NOM, Exposure Media) -- 8.4.2 Role of Physical Attributes and Preparation Methods -- 8.4.3 Role of Environmental Transformations -- 8.5 Recent Advances in Aggregation Studies -- 8.5.1 Advances in Theoretical Framework and Molecular Modeling -- 8.5.2 Dynamics of Fractal Dimension -- 8.5.3 Heteroaggregation -- 8.6 Future Challenges and Research Directions -- 8.6.1 Challenges in Aggregation Modeling -- 8.6.2 Challenges from Material Attributes (Shape and Morphology) -- 8.6.3 Nanohybrids and Nanocomposites -- 8.6.4 Soft-Coating Interaction with Bio- and Geomacromolecules -- 8.6.5 Complex Matrices -- 8.6.6 Future Research Directions -- Acknowledgments -- Appendix: Symbols -- References -- 9 Adsorption of Organic Compounds by Engineered Nanoparticles -- 9.1 Introduction -- 9.2 Sorption Characteristics of OCs on Different Types of ENPs -- 9.2.1 Sorption of OCs on Carbon-Based ENPs. , 9.2.2 Sorption of OCs on Other ENPs -- 9.3 The Methods Applied to Study the Adsorption Mechanisms of OCs by ENPs -- 9.3.1 pH-Dependent Sorption Analysis -- 9.3.2 Sorption Experiments in Organic Solvent -- 9.3.3 Model Chemicals and/or ENPs with Certain Structural Features -- 9.4 OC-ENP Interactions in Environment-Relevant Conditions -- 9.4.1 Effect of pH -- 9.4.2 Effect of Ionic Strength -- 9.4.3 Effect of Dissolved Organic Matter -- 9.4.4 Effect of ENPs Aggregation Status -- 9.4.5 Effect of Competing OCs -- 9.5 The Risks of OC-ENP Interaction -- 9.5.1 The Risks of OCs as Affected by ENPs -- 9.5.2 The Risks of ENPs as Affected by OCs -- 9.6 Summary and Future Perspectives -- Acknowledgments -- References -- 10 Sorption of Heavy Metals by Engineered Nanomaterials -- 10.1 Introduction -- 10.2 Sorption Mechanisms of Heavy Metals by ENMs -- 10.3 Sorption Kinetics of Heavy Metals by ENMs -- 10.3.1 Lagergren Pseudo First-Order Model -- 10.3.2 Lagergren Pseudo Second-Order Model -- 10.3.3 Elovich Equation -- 10.3.4 Intra-particle Diffusion Model -- 10.4 Sorption Thermodynamics of Heavy Metals by ENMs -- 10.4.1 Thermodynamic Sorption Parameters of Heavy Metals by ENMs -- 10.4.2 Thermodynamic Sorption Models -- 10.5 Factors Influencing Heavy Metal Sorption by ENMs -- 10.5.1 Influence of ENM Properties -- 10.5.2 Influence of Heavy Metal Properties -- 10.5.3 Influence of Solution Properties -- 10.6 Summary and Perspective -- References -- 11 Emission, Transformation, and Fate of Nanoparticles in the Atmosphere -- 11.1 Introduction -- 11.2 Summary of Previous Review Articles -- 11.3 Physicochemical Characteristics of Atmospheric Nanoparticles -- 11.3.1 Nucleation Mode -- 11.3.2 Aitken Mode -- 11.3.3 Accumulation Mode -- 11.3.4 Coarse Mode -- 11.4 Emissions of Airborne Nanoparticles in Atmospheric Environment -- 11.4.1 Emissions of Naturally Produced Nanoparticles. , 11.4.2 Emissions of Incidentally Produced Nanoparticles.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...