GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic books.  (1)
Document type
Publisher
Language
Years
  • 1
    Online Resource
    Online Resource
    Tokyo :Springer Japan,
    Keywords: Analytical biochemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (360 pages)
    Edition: 1st ed.
    ISBN: 9784431564638
    DDC: 612.01524
    Language: English
    Note: Intro -- Preface -- Contents -- Part I: Overview -- Chapter 1: Metallomics: Integrated Biometal Science -- 1.1 Introduction -- 1.2 Progress of Analytical Atomic Spectrometry -- 1.3 All-Element Present Theory -- 1.4 Chemical Speciation of Trace Metals in Biological Samples -- 1.5 Human Genome Project and the Rapid Rise of Omics Science -- 1.6 Proposal of Metallomics as Integrated Biometal Science-Historical Aspects -- 1.7 International Symposium on Metallomics -- 1.8 Progress of Metallomics Research -- 1.8.1 The Scientific Journal of Metallomics -- 1.8.2 Essentiality and Toxicity of the Elements -- 1.8.3 A Simplified Model of the Biological System -- 1.8.4 Scientific Fields in Trace Metal Science -- 1.8.5 Research Subjects in Metallomics -- 1.9 Summary -- References -- Part II: Analytical Techniques and Strategies Surrounding Metallomics -- Chapter 2: Speciation and Identification of Chalcogen-Containing Metabolites -- 2.1 Introduction -- 2.2 Hyphenated Techniques -- 2.3 Identification of Chalcogen-Containing Metabolites -- 2.3.1 Selenosugars -- 2.3.2 Selenohomolanthionine -- 2.3.3 Selenoneine -- 2.3.4 Selenocyanate -- 2.3.5 Trimethyltelluronium Ion -- 2.3.6 Te-Methyltellurocysteine -- 2.4 Conclusion -- References -- Chapter 3: Visualization of Intracellular Elements Using Scanning X-Ray Fluorescence Microscopy -- 3.1 Imaging Intracellular Elements at the Single-Cell Level Provides New Insights -- 3.2 Scanning X-Ray Fluorescence Microscopy -- 3.2.1 Synchrotron Radiation X-Ray Source -- 3.2.2 X-Ray Focusing Optics -- 3.2.3 Demonstration of SXFM Performance -- 3.3 Applications in Biology and Medicine -- 3.3.1 SXFM Is Now User-Friendly -- 3.3.2 Sample Preparation -- 3.3.3 Basement for Cells -- 3.3.4 Element Array -- 3.3.5 A Cell Line Subjected to Sample Imaging at the Single-Cell Level -- 3.3.6 Clinical Samples. , 3.3.7 Application in Metal Transport with Targeting -- 3.3.8 Transporter -- 3.3.9 Cell-Penetrating Peptides (CPPs) -- 3.4 Future SXFM -- 3.4.1 Improvement of X-Ray Sources -- 3.4.2 High-Resolution SXFM -- 3.4.3 Possible Labeled Probes -- 3.4.4 Application of Medical Probes to SXFM -- 3.4.5 SXFM Application for Different Types of Microscopy -- 3.5 Collaboration on Platforms in Different Fields -- 3.6 Conclusion -- References -- Chapter 4: Quantitative Elemental Bioimaging Protocol Using Femtosecond-Laser Ablation-ICP-Mass Spectrometry Coupled with Glas... -- 4.1 Introduction -- 4.2 Experimental Protocols -- 4.2.1 Instrumentations -- 4.2.2 Sample Preparations -- 4.2.3 Experiment Procedures -- 4.3 Results and Discussion -- 4.3.1 Calibration Strategy -- 4.3.2 Ablated Volume -- 4.3.3 Quantitative Imaging -- 4.4 Conclusion -- References -- Chapter 5: Single Cell Analysis by Using ICP-MS -- 5.1 Introduction -- 5.2 Overview of Cytometric Analysis by Using ICP-MS -- 5.3 ICP Mass Spectrometers for Cytometric Analysis -- 5.4 Cell Introduction Devices for Cytometric Analysis -- 5.5 Application of Cytometric Analysis by Using ICP-MS -- 5.5.1 Highly Sensitive Elemental Analysis by Time-Resolved ICP-MS -- 5.5.2 Mass Cytometry -- 5.6 Single Cell Analysis by Imaging Mass Spectrometry -- 5.7 Conclusion and Future Prospect -- References -- Chapter 6: Synchrotron Radiation X-Ray Analysis of Metal-Accumulating Plants -- 6.1 Introduction -- 6.2 Synchrotron Radiation X-Rays -- 6.3 X-Ray Analyses -- 6.3.1 Interactions of X-Rays with Matter -- 6.3.2 X-Ray Fluorescence -- 6.3.3 X-Ray Absorption Spectroscopy -- 6.3.4 X-Ray Diffraction -- 6.3.5 X-Ray Focusing Optics -- 6.4 Preparation of Biological Materials for Synchrotron Radiation (SR)-Based X-Ray Analyses and Applications in Metallomics -- 6.4.1 What Are Heavy Metal-Accumulating Plants?. , 6.4.2 General Preparation of Biological Materials -- 6.4.3 Example of Direct Analysis of Plant Tissues -- 6.4.4 Preparation and Analyses of Frozen Tissue Sections -- 6.4.5 Liquid and Powder Samples -- 6.4.6 Effects of Biomineralization on the Numbers of Grains Produced -- 6.5 Proposal Application for a Beamline -- 6.6 Prospective X-Ray Microanalyses in Metallomics -- References -- Chapter 7: 77Se NMR Spectroscopy for Speciation Analysis of Selenium Compounds -- 7.1 Introduction -- 7.2 Advantages of NMR Speciation Over Hyphenated Techniques -- 7.3 Observation of 77Se Nuclide in Authentic Standards -- 7.3.1 Chemical Shifts of Bio-selenocompounds by Direct Detection -- 7.3.2 Advanced Techniques for Detection of Bio-selenocompounds -- 7.4 Application of 77Se NMR Spectroscopy to Se Speciation in Biological Samples -- 7.5 Conclusions -- References -- Chapter 8: Protein Quantification and Quantitative Phosphorylation Analysis by the Determination of Hetero Atoms (S and P) by ... -- 8.1 Introduction -- 8.2 Experimental -- 8.2.1 Reagents -- 8.2.2 Tryptic Digestion Procedure -- 8.2.3 NanoHPLC-ICPMS -- 8.2.4 Screening of Phosphorylated Proteins in SDS-PAGE Gel Using LA-ICPMS -- 8.2.5 Evaluation of the Tryptic Digestion Efficiency -- 8.3 Results and Discussion -- 8.3.1 Optimization of the Octopole Reaction Gas Flow -- 8.3.2 Hyphenation of nanoHPLC and ICPMS -- 8.3.3 Assignment of S Atom Composition by the Use of nanoHPLC-ICPMS and Peptide Quantification -- 8.3.4 Tryptic Digestion Efficiency and Protein Quantification -- 8.3.5 Analysis of Degree of Phosphorylation -- 8.4 Conclusions -- References -- Chapter 9: Analysis of Drug Active Pharmaceutical Ingredients and Biomolecules Using Triple Quadrupole ICP-MS -- 9.1 Introduction -- 9.2 ICP-QQQ -- 9.2.1 ICP-QQQ -- 9.2.2 How MS/MS Works with a Reaction Gas -- 9.2.3 Reaction Cell Gas Selection. , 9.3 Application of ICP-QQQ for Drug API Analysis and Life Science Research -- 9.3.1 Drug API Analysis by LC-ICP-QQQ -- 9.3.2 Peptide and Phosphor Peptide Analysis by Capillary-LC-ICP-QQQ -- 9.4 Conclusions -- References -- Chapter 10: Highly Sensitive Analysis of Proteins and Metabolites by Metal Tagging Using LC-ICP-MS -- 10.1 Introduction -- 10.2 Analysis Using Metal Tags -- 10.2.1 Metal Tags and the Metal Tag Reagents -- 10.2.2 Derivatization by the Metal Tag Reagents -- 10.2.3 Separation of the Derivatives -- 10.3 Design of Metal Tags -- 10.3.1 Tags Based on Metal Chelates -- 10.3.2 Tags Based on Heteroatoms Binding with Covalent Bonds -- 10.3.3 Tags Based on Nanoparticles -- 10.4 Biomolecule Analysis by Metal Tags -- 10.4.1 Proteins -- 10.4.2 Amino Acids -- 10.4.3 Organic Acids -- References -- Part III: Application of Metallomics in Molecular Biology, Medicine and Pharmaceutical Sciences -- Chapter 11: Comprehensive Element Analysis of Prokaryotic and Eukaryotic Cells as well as Organelles by ICP-MS -- 11.1 Introduction -- 11.2 Experimental -- 11.2.1 Reagents -- 11.2.2 Samples -- 11.2.2.1 Cell Strains and Culture Conditions -- 11.2.2.2 Isolation of Subcellular Organelles -- 11.2.2.2.1 Isolation of Chloroplast from Spinach Leaves -- 11.2.2.2.2 Isolation of Mitochondria from Potato Tuber Tissues -- 11.2.2.2.3 Isolation of Mitochondria from Bovine Liver Tissues -- 11.2.3 Apparatus -- 11.2.4 Downsized Microwave-Assisted Acid Digestion -- 11.3 Results and Discussion -- 11.3.1 Observation of Intact Cells and Organelles -- 11.3.2 Determination of Major-to-Ultratrace Elements in Unicellular Microorganisms and Subcellular Organelles -- 11.3.3 Elemental Abundance of E. coli -- 11.3.4 Elemental Abundance of Cyanobacteria -- 11.3.5 Elemental Abundance of Chlorella -- 11.3.6 Elemental Abundance of Chloroplast -- 11.3.7 Elemental Abundance of Mitochondria. , 11.4 Conclusion -- References -- Chapter 12: Iron Isotope Signature in Red Blood Cell Samples from Japanese Female Donors of Various Ages -- 12.1 Introduction -- 12.2 Experimental -- 12.2.1 Instrumentation -- 12.2.2 Effects of Fe Valency in Solution on Measured Isotopic Composition -- 12.2.3 Reproducibility of Analysis -- 12.2.4 Sample -- 12.2.5 Sample Preparation -- 12.2.6 Dietary Survey -- 12.3 Results and Discussion -- 12.3.1 Gender Difference in Fe Isotope Ratio -- 12.3.2 Effects of Age -- 12.3.3 Differences Among Race -- 12.3.4 Effect of Biological and Nutritional Data on Fe Isotopes -- 12.3.5 Conclusive Remarks -- Acknowledgments -- References -- Chapter 13: Roles of Zinc Transporters in Cellular Transport of Cadmium and Manganese -- 13.1 Introduction -- 13.2 Cadmium Transport from a Viewpoint of Metallomics -- 13.2.1 Multiple Candidate Transporters for Cadmium Transport -- 13.2.2 Establishment of Cadmium-Resistant Cells from Metallothionein-Null Cells -- 13.2.3 Metallomics Approach to Identify Cadmium Transporter -- 13.3 The Roles of ZIP8 and ZIP14 in Cadmium Transport -- 13.3.1 Identification of ZIP8 and ZIP14 as Cadmium Transporters -- 13.3.2 Characterization of ZIP8 and ZIP14 as Cadmium Transporters -- 13.3.3 The Roles of ZIP8 and ZIP14 in Cadmium Transport in the Kidney -- 13.4 The Roles of ZIP8 and ZIP14 in Manganese Transport -- 13.4.1 Interactions of Cd and Mn Transport in Nonmammalian Species -- 13.4.2 RBL-2H3 Cell Line as a Model of Cellular Manganese Transport -- 13.4.3 Manganese Transport in Neuronal Cells -- 13.5 Human Diseases Related to Disturbances in Manganese Transport -- 13.5.1 ZnT10 Mutation and Hyperaccumulation of Manganese -- 13.5.2 ZIP8 Mutation and Disorders of Glycosylation -- 13.6 Conclusion -- References. , Chapter 14: Link Between Metal Homeostasis and Neurodegenerative Diseases: Crosstalk of Metals and Amyloidogenic Proteins at t.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...