GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Paris :Springer Paris,
    Keywords: Neovascularization. ; Electronic books.
    Description / Table of Contents: This book reviews recent advances in understanding of the molecular and cellular mechanisms of angiogenesis, with a focus on how to integrate these observations into the context of developmental, post-natal and pathological neovascularization.
    Type of Medium: Online Resource
    Pages: 1 online resource (501 pages)
    Edition: 1st ed.
    ISBN: 9782817804668
    DDC: 612.13
    Language: English
    Note: Intro -- Contents -- Angiogenesis: An Ever-Challenging Research Field -- Acknowledgment -- References -- Part I: Angiogenesis During Embryonic Development -- Chapter 1: Emergence of Endothelial Cells During Vascular Development -- 1.1 Introduction -- 1.2 Vasculogenesis -- 1.3 Hemangioblast -- 1.4 Remodeling of the Primary Capillary Plexus into Arteries and Veins -- 1.5 Role of Hemodynamic Forces in Remodeling -- 1.6 Guidance of Capillaries by Endothelial Tip Cells -- 1.7 Circulating Endothelial Cells in the Embryo -- 1.8 Perspectives -- References -- Chapter 2: Lymphatic Vascular Morphogenesis -- 2.1 Early Steps of Lymphatic Vascular Development -- 2.1.1 Lymphatic Endothelial Cell Specification -- 2.1.2 Lymphatic Vessel Sprouting from the Veins -- 2.1.3 Separation of Lymphatic and Blood Vasculatures -- 2.1.4 Non-venous Origins of Lymphatic Vasculature -- 2.2 Lymphatic Vessel Remodelling -- 2.2.1 Sprouting and Growth of Lymphatic Vessels -- 2.2.2 Regulation of Lymphatic Endothelial Cell-Cell Junctions -- 2.2.3 Valve Morphogenesis -- 2.2.4 Smooth Muscle Cells Recruitment to Collecting Lymphatic Vessels -- 2.3 Lymphatic Vasculature and Diseases -- 2.3.1 Lymphoedema -- 2.3.2 Inflammation -- 2.3.3 Tumour Metastasis -- 2.3.4 Lipid Absorption -- 2.4 Concluding Remarks -- References -- Part II: The Physiological Angiogenic Signal: Cellular and Molecular Mechanisms -- Chapter 3: Finding New Partnerships: The Function of Individual Extracellular Receptor Domains in Angiogenic Signalling by VEGF Receptors -- 3.1 Biology of VEGF Family Growth Factors and Their Receptors -- 3.1.1 Introduction to VEGF -- 3.1.2 Structure-Function Relationship of VEGF and VEGF Receptors -- 3.1.2.1 Receptor Specificity of VEGFs -- 3.1.2.2 Structural Analysis of VEGF Binding to VEGFR-1, VEGFR-2 and VEGFR-3 -- 3.1.2.3 Activation of VEGF Receptors. , 3.2 VEGFR-2 as Part of a Signalling Platform -- 3.2.1 Neuropilins (NRPs) -- 3.2.2 Ephrin-B2 -- 3.2.3 VE-Cadherin -- 3.2.4 Dopamine Receptor D2 -- 3.2.5 CD146 -- 3.2.6 CD44 -- 3.3 Extracellular Components of the VEGF/VEGFR Signalling Cascade as Targets for Therapy and Functional Inhibition -- 3.3.1 VEGF/VEGFRs in Disease -- 3.3.2 VEGF/VEGFRs as Targets in Therapeutic Inhibition -- 3.3.2.1 VEGF-Neutralising Agents -- 3.3.2.2 Anti-VEGFR-1 Agents -- 3.3.2.3 Anti-VEGFR-2 D23 Agents -- 3.3.2.4 Anti-VEGFR-2 D4-7 Agents -- 3.3.3 Limitations to VEGF/VEGFR Targeted Therapy -- 3.3.4 Outlook and Conclusions -- References -- Chapter 4: Wnt/Frizzled Signaling in the Vasculature -- 4.1 Introduction -- 4.1.1 Wnt Signal Transduction -- 4.1.1.1 The Canonical Pathway: Wnt/β-Catenin -- 4.1.1.2 The Planar Cell Polarity Pathway -- 4.1.1.3 The Calcium-Mediated Pathway -- 4.1.2 Wnt Inhibitors and Modulators -- 4.1.3 Atypical Receptors Kinases -- 4.2 Role of the Wnt/Frizzled in Vascular Development -- 4.2.1 Evidence of Wnt/Fzd Expression and Signaling in Endothelial Cells -- 4.2.2 Placental Development -- 4.2.3 Postnatal Retinal Angiogenesis -- 4.2.4 Brain Vasculature -- 4.3 Role of Wnt Regulation in Vascular Pathology -- 4.3.1 Choroidal Neovascularization and Oxygen-Induced Retinopathy -- 4.3.2 Wound Healing -- 4.3.3 Hind Limb and Cardiac Ischemia -- 4.4 Conclusion -- 4.5 Online Databases -- References -- Chapter 5: BMP9, BMP10, and ALK1: An Emerging Vascular Signaling Pathway with Therapeutic Applications -- 5.1 Bone Morphogenetic Proteins (BMPs) -- 5.2 BMP9/BMP10/ALK1 Signaling Complex -- 5.3 The Role of BMP9 and BMP10 in Vascular Development -- 5.3.1 Knowledge from Human Vascular Diseases -- 5.3.2 Knowledge from Animal Models: Mice and Zebrafish -- 5.3.2.1 Mice -- 5.3.2.2 Zebrafish -- 5.3.3 In Vitro Roles of BMP9 and BMP10 in Endothelial Cells. , 5.4 Therapeutic Applications of the BMP9/BMP10/ALK1 Signaling Pathway -- 5.4.1 HHT -- 5.4.2 BMP9, BMP10, and ALK1 as Biomarkers in Cancer -- 5.4.3 Therapeutic Applications of the BMP9/BMP10/ALK1 Signaling Pathway in Tumor Angiogenesis -- 5.4.3.1 ALK1 Extracellular Domain (ALK1 ECD) -- 5.4.3.2 Anti-ALK1 Antibody (PF-03446962) -- 5.4.3.3 Anti-endoglin Antibody (TRC105) -- 5.5 Conclusions and Perspectives -- References -- Chapter 6: Apelin Signaling in Retinal Angiogenesis -- 6.1 Apelin Signaling -- 6.1.1 Receptor Discovery and Isolation of the Endogenous Ligand -- 6.1.2 Multiple Active Ligands and Receptor Heterodimers -- 6.1.3 Gene Transcription and Mode of Signaling -- 6.1.4 Physiological Functions of Apelin Signaling -- 6.2 The Retina -- 6.2.1 Anatomy and Development -- 6.2.2 Astrocyte: The Key Mediator of Neuron/Endothelial Cell Interactions -- 6.2.3 Developmental Patterning of Retinal Vessels -- 6.2.4 Subpopulations of Endothelial Cells -- 6.3 Apelin Signaling and Formation of Retinal Vessels -- 6.3.1 Apelin: A Bona Fide Angiogenic Factor -- 6.3.2 Vascular Phenotype of Apelin or APJ Gene Invalidation -- 6.3.3 Temporal Expression of Apelin Signaling Coincides with the Angiogenic Phase -- 6.3.4 Apelin Receptor Gene: An Early Marker of the Venous Phenotype -- 6.3.5 Receptor and Ligand Gene as Potential Markers of Tip or Stalk Phenotype -- 6.3.6 Apelin Signaling as a Linker Between VEGF-Secreting Astrocytes and Proliferating Stalk Cells -- 6.3.7 Apelin Signaling Regulates LIF Secretion and Controls Astrocyte Maturation -- 6.4 Apelin Signaling and Pathological Retinal Angiogenesis -- 6.4.1 The Retinopathy of Prematurity -- 6.4.2 Diabetic Retinopathy -- 6.4.3 Telangiectatic Vessels -- 6.5 Clinical Implications -- References -- Chapter 7: Emerging Role of the Two Related Basic Helix-Loop-Helix Proteins TAL1 and LYL1 in Angiogenesis -- 7.1 Introduction. , 7.2 Properties of LYL1 and TAL1 -- 7.3 Hematopoietic Functions of Tal1, Lyl1, and Lmo2 -- 7.4 Tal1 and Lmo2 Are Required for Cardiovascular Development -- 7.5 TAL1 Activity Is Required in the Early Steps of Angiogenesis -- 7.5.1 TAL1 and LMO2 Initiate Tubulogenesis Through VE-Cadherin Upregulation -- 7.5.2 TAL1-LMO2 Complexes Controls Angiopoietin-2 Expression -- 7.6 LYL1 Is Required for the Maturation of New Blood Vessels -- 7.6.1 Lyl1 Deficiency Leads to Increased Angiogenic Responses -- 7.6.2 LYL1 Contributes to Vessel Maturation and Stabilization -- 7.7 Coordinated Activity of TAL1 and LYL1 to Regulate Angiogenic Processes -- References -- Part III: Hypoxia, Ischemia and Angiogenesis -- Chapter 8: Hypoxia and Extracellular Matrix Remodeling -- 8.1 Hypoxia Induction of Angiogenesis -- 8.2 Establishment of the Vascular BM -- 8.3 Extracellular Matrix Proteolytic Degradation -- 8.4 Regulation of Hypoxia-Induced Growth Factor Sequestration in the Extracellular Matrix -- 8.5 Matricellular Proteins -- 8.5.1 Group A Thrombospondins -- 8.5.2 Group B Thrombospondins -- 8.6 Conclusion -- References -- Chapter 9: Sphingosine-1-Phosphate in Hypoxic Signaling -- 9.1 Hypoxia Significance and Impact on Clinical Outcome -- 9.2 The Hypoxia-Inducible Factors -- 9.3 Sphingosine 1-Phosphate Metabolism in Cancer -- 9.4 Sphingosine 1-Phosphate Signaling in Hypoxia -- 9.5 Sphingosine 1-Phosphate Signaling as a Target for Anti- hypoxic Strategy -- 9.6 Concluding Remarks -- References -- Chapter 10: Reciprocal Crosstalk Between Angiogenesis and Metabolism -- 10.1 Regulation of Angiogenesis by Oxygen and Metabolism -- 10.1.1 PHDs and HIF: The Molecular Players of Angiogenesis Are Regulated by Oxygen and Metabolic Intermediates -- 10.1.2 Modulators of HIF and PHDs by Nonhypoxic Stimuli -- 10.1.2.1 TCA Cycle and Other Metabolic Intermediates. , 10.1.2.2 Reactive Oxygen Species -- 10.1.3 Modulation of Angiogenesis by Metabolic Regulators -- 10.2 EC Metabolism Impacts Vessel Sprouting -- 10.2.1 EC Survival and Functions Are Dependent on Glycolysis -- 10.2.2 Metabolic Changes During Vascular Sprouting -- 10.3 Regulation of Metabolism by Angiogenesis -- Bibliography -- Chapter 11: Endothelial Progenitor Cells and Cardiovascular Ischemic Diseases: Characterization, Functions, and Potential Clinical Applications -- 11.1 Introduction -- 11.2 Cultured EPC -- 11.3 Recruitment of EPCs to the Ischemic Tissue -- 11.3.1 CXCL12/CXCR4 -- 11.3.2 Integrins and Selectins -- 11.3.3 Hemostatic Partners, Thrombospondin, and Thrombin Interaction with EPCs -- 11.3.4 Other Factors -- 11.4 Mechanisms of EPC-Related Effects on Postischemic Revascularization -- 11.4.1 Differentiation into Endothelial Cells -- 11.4.2 Paracrine Effects -- 11.4.3 Interaction with the Host Environment -- 11.5 EPCs as Diagnostic and Prognostic Tools -- 11.5.1 EPCs as Biomarkers of Cardiovascular Diseases -- 11.5.1.1 EPCs and Cardiovascular Risk Factors -- 11.5.1.2 EPCs and the Prevalence of CVDs -- 11.5.2 Are EPCs a Useful Prognostic Factor for Cardiovascular Diseases? -- 11.6 EPCs as Therapeutic Tools -- 11.6.1 Adult Stem/Progenitor Cells -- 11.6.2 Alternative Sources of EPCs -- 11.6.2.1 Embryonic Stem Cells (ESCs) -- 11.6.2.2 Induced Pluripotent Stem Cells (iPSCs) -- 11.6.2.3 Local Source of Stem/Progenitor Cells -- 11.7 Conclusion -- References -- Part IV: Tumor Angiogenesis -- Chapter 12: Endothelial Cell Reactions to Oxygen: Implications for Cancer -- 12.1 Overview of Oxygen-Mediated Pathways -- 12.2 Hypoxia-Inducible Factors Mediate Cellular Oxygen Signaling -- 12.3 The Function of Prolyl Hydroxylase Domain Proteins and Factor Inhibiting HIF as Oxygen Sensors. , 12.4 Role of Oxygen Signaling in Physiological and Pathophysiological Angiogenesis.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (28 pages)
    Edition: 1st ed.
    ISBN: 9782346046713
    DDC: 500
    Language: French
    Note: Intro -- À propos de Collection XIX -- Titre -- CONFÉRENCE DE M. LOUIS BOSCH - Professeur de Mathématiques au Collège -- CONFÉRENCE DE M. ÉMILE PAGÈS - Professeur de Philosophie an Collège -- Note au lecteur -- Page de titre de l'édition imprimée -- Copyright.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (153 pages)
    Edition: 1st ed.
    ISBN: 9788412661675
    Language: Spanish
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Plant molecular biology reporter 15 (1997), S. 371-376 
    ISSN: 1572-9818
    Keywords: band shift assay ; DNA binding protein ; maize ; nuclear protein extraction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The analysis of DNA binding proteins can be difficult when only small quantities of tissue expressing the desired protein are available. We present a protocol for the preparation of nuclear extracts from as little as 100 mg of tissue. This protocol is well suited for extraction of DNA binding proteins from tissues that are difficult to obtain in large quantities such as maize embryos.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-5028
    Keywords: maize ; ABA-induced gene ; protein phosphorylation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The ABA-induced MA12 cDNA from maize, which encodes a set of highly phosphorylated embryo proteins, was used to isolate the corresponding genomic clone. This gene, called RAB-17 (responsive to ABA), encodes a basic, glycine-rich protein (mol. wt. 17 164) containing a cluster of 8 serine residues, seven of them contiguous. It is a homologue of the rice RAB-21 gene (Mundy J, Chua NH, EMBO J 7; 2279–2286, 1988). Phosphoamino acid analysis of the isolated protein indicates that only the serine residues are phosphorylated and a putative casein-type kinase phosphorylatable sequence was identified in the protein. The pattern of expression and in vivo phosphorylation of the RAB-17 protein was studied during maize embryo germination and in calli of both meristematic or embryonic origin. ABA treatment induced the synthesis of RAB-17 mRNA and protein in calli, however, the RAB-17 proteins were found to be highly phosphorylated only in embryos.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-5028
    Keywords: ABA-responsive element ; maize ; tissue-specific factors ; rab genes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The maize gene rab28 has been identified as ABA-inducible in embryos and vegetative tissues. It is also induced by water stress in young leaves. The proximal promoter region contains the conserved cis-acting element CCACGTGG (ABRE) reported for ABA induction in other plant genes. Transient expression assays in rice protoplasts indicate that a 134 bp fragment (-194 to -60 containing the ABRE) fused to a truncated cauliflower mosaic virus promoter (35S) is sufficient to confer ABA-responsiveness upon the GUS reporter gene. Gel retardation experiments indicate that nuclear proteins from tissues in which the rab28 gene is expressed can interact specifically with this 134 bp DNA fragment. Nuclear protein extracts from embryo and water-stressed leaves generate specific complexes of different electrophoretic mobility which are stable in the presence of detergent and high salt. However, by DMS footprinting the same guanine-specific contacts with the ABRE in both the embryo and leaf binding activities were detected. These results indicate that the rab28 promoter sequence CCACGTGG is a functional ABA-responsive element, and suggest that distinct regulatory factors with apparent similar affinity for the ABRE sequence may be involved in the hormone action during embryo development and in vegetative tissues subjected to osmotic stress.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-5028
    Keywords: ABRE ; embryogenesis ; G-box ; gene expression ; maize ; protein-DNA interaction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Transcription of the rab28 gene from maize is induced in late embryo development and in response to abscisic acid. We have studied the regulation of the activity of the rab28 promoter in embryos. Two abscisic acid-responsive elements (ABREs) were necessary for expression in embryos of transgenic Arabidopsis and in transient transformation in maize embryos. In vivo footprinting showed that there was protein binding to the ABREs and to other cis elements in the promoter in young embryos before expression of rab28. This shows that the rab28 promoter is in an open chromatin structure before developmental activation. The ABREs are important for the induction and have protein binding in young embryos. Nuclear proteins extracted from embryos before activation of rab28 bound to the ABREs in band shift assays. A complex with different mobility was formed between nuclear proteins and the ABREs after induction of rab28 suggesting a modification of the ABRE-binding factor or an exchange of proteins. The footprints on the ABREs were unaltered by induction with abscisic acid or during developmental activation of rab28. These results indicate that constitutive binding of transcription factor(s) on the ABRE is central in embryonic regulation of the rab28 gene.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 119 (1989), S. 147-154 
    ISSN: 1573-5036
    Keywords: architecture ; maize ; mathematical model ; root growth ; root development ; simulation model ; spatial distribution ; Zea mays
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In order to study the nutrient and water uptake of rootsin situ, we need a quantitative three-dimensional dynamic model of the root system architecture. The present model takes into account current observations on the morphogenesis of the maize root system. It describes the root system as a set of root axes, characterised by their orders and their inter-node of origin. The evolution of the simulated pattern is achieved by three processes, occuring at each time step: emission of new primary root axes from the shoot, growth and branching of existing root axes. The elongation of an axis depends on its order, inter-node and local growing conditions. Branches appear acropetally at a specified distance from the apex and from former branches, along ranks facing xylem poles, with a branching angle specific to their order and inter-node. From the three-dimensional branched patterns simulated by the model, various outputs, such as root profiles or cross-section maps can be computed, compared to observed data and used as inputs in uptake models. A number of examples of such possible outputs are presented.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Plant molecular biology 29 (1995), S. 797-807 
    ISSN: 1573-5028
    Keywords: maize ; RNA-binding protein ; phosphorylation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The maize RNA-binding protein MA16 is a non-ribosomal nucleolar protein widely distributed in different maize tissues. We have previously shown that the MA16 protein binds preferentially to guanosine-and uridine-rich sequences. As a step towards the identification of specific targets with which MA16 interacts within the cell, we investigated the RNA-binding affinities and several other aspects of the protein by using binding assays and immunochemistry. The MA16 protein showed a wide spectrum of RNA-binding activities with lower affinities to several RNAs that was salt and heparin-sensitive indicative of electrostatic interactions, and higher affinities to particular RNAs including rRNA and translatable mRNA sequences. Among the RNAs found associated with MA16 protein was that encoding MA16 itself. This observation raises the possibility that MA16 gene expression could be self-regulated. Immunoprecipitation studies showed that in vivo MA16 was phosphorylated and that MA16 interacts with RNAs through complex association with several proteins. These results suggest that both phosphorylation and interaction with other proteins may be involved in determining RNA-binding specificities of MA16 in the cell.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-5036
    Keywords: maize ; root growth model ; root mapping ; root spatial distribution ; root system ; Zea mays L.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Most existing water and nutrient uptake models are based on the assumption that roots are evenly distributed in the soil volume. This assumption is not realistic for field conditions, and significantly alters water or nutrient uptake calculations. Therefore, development of models of root system growth that account for the spatial distribution of roots is necessary. The objective of this work was to test a three dimensional architectural model of the maize root system by comparing simulated horizontal root maps with observed root maps obtained from the field. The model was built using the current knowledge on maize root system morphogenesis and parameters obtained under field conditions. Simulated root maps (0.45 × 0.75 m) of horizontal cross sections at 3 depths and 3 dates were obtained by using the model for a plant population. Actual root maps were obtained in a deep, barrier-free clay-loamy soil by digging pits, preparing selected horizontal planes and recording root contacts on plastic sheets. Results showed that both the number of cross-sections of axile roots, and their spatial distribution characterized with the R-index value of Clark and Evans (1954), were correctly accounted for by the model at all dates and depths. The number of cross-sections of laterals was also correctly predicted. However, laterals were more clustered around axile roots on simulated root maps than on observed root maps. Although slight discrepancies appeared between simulated and observed root maps in this respect, it was concluded that the model correctly accounted for the general colonization pattern of the soil volume by roots under a maize crop.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...