GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Electronic books.  (3)
  • Ocean surface fluxes
  • 1
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Heat -- Transmission. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (360 pages)
    Edition: 1st ed.
    ISBN: 9780124079328
    Series Statement: Issn Series
    DDC: 621.4022
    Language: English
    Note: Front Cover -- Advances in Heat Transfer -- Copyright -- Contents -- Contributors -- Preface -- Chapter One: Trends, Tricks, and Try-ons in CFD/CHT -- 1. Introduction -- 2. Trends -- 2.1. Computational grid trends -- 2.1.1. Early choices: Cartesian, cylindrical-polar, and body-fitted -- 2.1.2. Arbitrary polygonal cells -- 2.1.3. PARSOL: for ``partly solid´´ cells -- 2.1.4. Space-averaged rather than detailed-geometry CFD -- 2.1.5. IBM: the immersed boundary method -- 2.1.6. Divided Cartesian grids -- 2.1.7. The future -- 2.2. Linear equation solver trends -- 2.2.1. Point-by-point (i.e., PBP) relaxation methods -- 2.2.2. General remarks about linear-equation solvers -- 2.2.3. The Thomas (or tridiagonal matrix) algorithm (i.e., TDMA) -- 2.2.4. Acceleration by overrelaxation -- 2.2.5. Conjugate gradient solvers -- 2.2.6. Preconditioned conjugate gradient solvers -- 2.3. Turbulence model trends -- 2.3.1. Origins -- 2.3.2. The effective-viscosity hypothesis -- 2.3.2.1. Early days -- 2.3.2.2. The mixing length hypothesis -- 2.3.2.3. Two-equation turbulence models -- 2.3.2.4. Wall functions -- 2.3.3. Reynolds stress models -- 2.3.4. DNS -- 2.3.5. Large eddy simulation -- 2.3.6. Population-based models -- 2.3.6.1. The main idea -- 2.3.6.2. Graphic representations -- 2.3.6.3. The ``TriMix´´ diagram, a ``map´´ of fuel-air-combustion product states -- 2.3.6.4. The combustor-simulation problem -- 2.3.6.5. When the turbulent fluctuations are ignored -- 2.3.6.6. EBU: the first two-member population model -- 2.3.6.7. A two-member model with Navier-Stokes equations for each member -- 2.3.6.8. A four-member population model -- 2.3.6.9. The multimember population -- 2.3.6.10. Populational and conventional CFD compared -- 3. Tricks -- 3.1. The IMMERSOL radiation model -- 3.1.1. The magnitude of the radiative problem -- 3.1.2. The action-at-a-distance difficulty. , 3.1.3. IMMERSOL: the main features -- 3.1.3.1. The dependent variables -- 3.1.3.2. The differential equations -- 3.1.3.3. The source terms -- 3.1.3.4. The value ascribed to λ3 -- 3.1.3.5. The boundary conditions -- 3.1.4. IMMERSOL: the rationale -- 3.1.4.1. Starting points -- 3.1.4.2. First steps -- 3.1.4.3. Between the ``thick´´ and ``thin´´ extremes -- 3.1.4.4. Wall emissivity as an extra resistance -- 3.1.5. IMMERSOL: conclusions -- 3.2. The wall-distance trick -- 3.2.1. How to calculate Wgap -- 3.2.2. The L equation -- 3.2.3. The parallel-wall situation -- 3.2.4. Concluding remark -- 3.3. The cut-link trick -- 3.3.1. Introduction -- 3.3.2. The pros and cons of PARSOL -- 3.3.3. Detecting the link intersections -- 3.3.3.1. The problem -- 3.3.3.2. The 2D projection method (2DPM) -- 3.3.3.3. The 2D section method (2DSM) -- 3.3.3.4. Other aspects of facet-grid-line intersection detection -- 3.3.4. Changing coefficients in SPARSOL -- 3.3.4.1. The problem -- 3.3.4.2. Changing the distances -- 3.3.4.3. Changing the areas -- 3.3.4.4. Adding fluid-side resistances -- 3.3.5. Modifying sources -- 3.3.6. Concluding remarks about SPARSOL -- 4. Try-ons -- 4.1. A differential equation for mixing length -- 4.1.1. What ludwig prandtl might have done -- 4.1.2. The spalart-allmaras viscosity-transport model -- 4.1.3. The ``mixing length transport try-on´´ -- 4.1.4. How ``const1´´ might be determined: the ``reverse-engineering´´ approach -- 4.1.5. Concluding remarks about mixing length transport -- 4.2. The population approach to swirling flow -- 4.2.1. The problem -- 4.2.2. A ``try-on´´ solution -- 4.3. Hybrid CFD ``Try-on´´ -- 4.3.1. The general idea -- 4.3.2. The partially parabolic method extended -- 4.3.3. Simulating automobile aerodynamics -- 4.3.4. Environmental applications -- 4.3.5. Generalizing wall functions -- 5. Concluding Remarks -- References. , Chapter Two: A Study of Micro-scale Boiling by Infrared Techniques -- 1. Introduction -- 1.1. Capability of infrared thermography heat transfer measurements -- 1.2. Methodology of IR measurement in microsystems -- 1.3. Microscale phenomenon of boiling -- 1.3.1. Pool boiling -- 1.3.2. Boiling in micro-channels -- 2. Boiling Incipience -- 2.1. Models for prediction of incipient boiling heat flux and wall superheat -- 2.2. Comparison between models and experiments -- 2.2.1. Wall superheat -- 2.2.2. The Influence of Surface Roughness on Boiling Incipience -- 2.2.3. Effect of Inlet Velocity on Incipient Boiling Heat Flux -- 3. Boiling Heat Transfer in Micro-channels -- 3.1. Heat transfer coefficient -- 3.2. Flow instabilities -- 3.2.1. Fluctuation of pressure drop, fluid, and heated wall temperatures -- 4. Nucleation Characteristics of Heaters -- 4.1. Nucleation site density (NSD) -- 4.2. Dryout -- 4.2.1. Flat surface with nano-scale roughness -- 4.2.2. Channel surface with micro-scale roughness -- 4.2.3. Explosive boiling -- 5. The Boiling Crisis Phenomenon -- 5.1. CHF measurements in micro-channels -- 5.2. Physical approach based on IR measurements -- 5.2.1. Period between successive events -- 5.2.2. The initial thickness of the liquid film -- 6. Effect of Surface Active Agents (Surfactants) on Boiling Characteristics -- 6.1. Properties of surfactants -- 6.2. Pool boiling heat transfer -- 6.2.1. Physical properties of solutions -- 6.2.2. Instrumentation -- 6.2.3. Visualization of thermal pattern on the heated wall -- 6.2.4. Boiling curves and heat transfer coefficients -- 6.2.5. The Effect of Physical Properties of Surfactant Solution on Heat Transfer -- 6.3. Boiling in confined narrow space -- 6.3.1. Boiling Curves and Average Heat Transfer -- 6.4. ONB in parallel micro-channels. , 6.4.1. Effect of dissolved gases on ONB during flow boiling of water and surfactant solutions in micro-channels -- 6.4.2. Boiling incipience in degraded surfactant solutions -- 7. Experimental Study of Integrated Micro-channel Cooling for 3D Electronic Circuit Architectures -- 8. Uncertainty -- 9. Conclusions -- References -- Chapter Three: Technology Evolution, from the Constructal Law -- 1. Technology Evolution, Predicted -- 2. Evolution of Compactness -- 3. Tree-Shaped Designs: Conduction, Fluid Flow, and Convection -- 4. Free Convection: An Engine+Brake System -- 5. Constructal Law, Design in Nature, and Complexity -- References -- Chapter Four: Recent Advances in Vapor Chamber Transport Characterization for High-Heat-Flux Applications -- 1. Introduction -- 1.1. Ultrathin vapor chambers for thermal management of electronics -- 1.2. Nucleate boiling in porous wick structures -- 1.3. Recent advances -- 2. Experimental Evaluation of Capillary-Fed Evaporation and Boiling -- 2.1. Homogeneous wick structures: morphological, pore size, porosity, and thickness effects -- 2.1.1. Sintered screen mesh -- 2.1.2. Monoporous sintered powder -- 2.1.3. Biporous sintered powder -- 2.1.4. Summary -- 2.2. Efficient liquid feeding and vapor extraction features -- 2.3. Prediction of capillary-fed boiling thermal resistance -- 2.4. Incipience of boiling under capillary-fed conditions -- 2.5. Dryout mechanisms and heater size dependency -- 3. Device-Level Modeling, Testing, and Design for High-Heat-Flux Applications -- 3.1. Flat heat pipe and vapor chamber models -- 3.1.1. Analytical modeling approaches -- 3.1.2. Numerical modeling approaches -- 3.1.3. Summary -- 3.2. Wick thermophysical properties and pore-scale evaporation characteristics -- 3.2.1. Simplified analytical prediction -- 3.2.2. Empirical characterization -- 3.2.3. Advances in characterization methods. , 3.3. Recent advances in ultrathin vapor chamber modeling -- 3.3.1. Wick microstructure effects on evaporation characteristics -- 3.3.2. Boiling in the wick structure -- 3.4. Design and development of ultrathin vapor chamber devices -- 3.4.1. Radio-frequency TGP -- 3.4.2. Micro-/nanostructured TGP -- 3.4.3. Planar vapor chambers with hybrid evaporator wicks -- 3.4.4. Polymer-based flat heat pipe -- 3.4.5. Silicon TGP vapor chamber -- 3.4.6. Titanium TGP -- 4. Nanostructured Capillary Wicks for Vapor Chamber Applications -- 4.1. Assessment and design of nanostructured wicks -- 4.1.1. Nanowire array wicks -- 4.1.2. Nanostructured coatings -- 4.2. Experimental evaluation of nanostructured wicks -- 4.2.1. Nanowire array wicks -- 4.2.2. Nanostructured coatings -- 5. Closure -- Acknowledgments -- References -- Chapter Five: Applications of Nanomaterials in Solar Energy and Desalination Sectors -- 1. Introduction -- 2. Solar Energy -- 2.1. Thermal energy storage systems -- 2.2. Direct absorption solar collectors -- 2.3. Photovoltaic technology -- 2.4. Desalination -- 3. Conclusions -- References -- Author Index -- Subject Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Energy transfer. ; Heat -- Transmission. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (266 pages)
    Edition: 1st ed.
    ISBN: 9780080575872
    Series Statement: Issn Series
    DDC: 621.4022
    Language: English
    Note: Front Cover -- Advances in Heat Transfer -- Copyright -- Contents -- Contributors -- Preface -- Chapter One: Review of the cavity effect: Modeling and impact of cavity shape on apparent radiative surface properties -- 1 Introduction -- 2 Objective and overview -- 3 General model for the spectral, hemispherical apparent emissivity of a cavity -- 3.1 Spectral, hemispherical apparent emissivity of a cavity -- 3.2 Apparent emissivity of a cavity with isothermal, diffuse, and gray walls -- 3.3 Equivalence of apparent emissivity and absorptivity -- 3.4 Hemispherical, integrated, and local apparent emissivity -- 3.5 Methods for determining apparent radiative surface properties -- 4 Verification of the general model for apparent radiative surface properties -- 5 Apparent emissivity for isothermal, diffuse, gray, two-surface enclosures -- 5.1 Cylindrical cavity -- 5.2 Conical cavity -- 5.3 Spherical cavity -- 5.4 Cylindro-conical cavity -- 5.5 Cylindro-inner cone cavity -- 5.6 Double-cone cavity -- 5.7 Geometric comparison -- 6 Advances in cavity modeling -- 6.1 Cylindrical cavity -- 6.1.1 Diffusely reflecting and emitting surfaces -- 6.1.2 Specularly reflecting and diffusely emitting surfaces -- 6.2 Conical cavity -- 6.2.1 Diffusely reflecting and emitting surfaces -- 6.2.2 Specularly reflecting and diffusely emitting surfaces -- 6.3 Spherical cavity -- 6.3.1 Diffusely reflecting and emitting surfaces -- 6.3.2 Specularly reflecting and diffusely emitting surfaces -- 6.4 Cylindro-conical cavity -- 6.4.1 Diffusely reflecting and emitting surfaces -- 6.4.2 Specularly reflecting and diffusely emitting surfaces -- 6.5 Cylindro-inner cone cavity -- 6.6 Double-cone cavity -- 7 Comparison of hemispherical apparent emissivity -- 8 Cavity effect applications -- 9 Conclusions -- Acknowledgments -- References. , Chapter Two: Hyperthermia applications in cardiovascular and cancer therapy treatments -- 1 Introduction -- 2 Hyperthermia in cardiovascular diseases -- 2.1 LDL transport in arterial walls: two approaches -- 2.2 Governing equations -- 2.3 Effects of hypertension and hyperthermia on LDL -- 2.4 Hyperthermia and soret effects on LDL concentration -- 3 Using hyperthermia in cancer treatment applications -- 3.1 Nanoparticle usage for hyperthermia applications -- 3.2 Gold-based nanostructures -- 3.3 Magnetic nanoparticles -- 3.4 Iron oxide nanoparticles -- 3.5 Carbon nanotubes -- 3.6 Heat generation -- 3.7 Specific absorption rate -- 3.8 Governing equations -- 3.9 The impact of blood vessels on temperature patterns -- 4 Conclusions -- References -- Chapter Three: Enhancement of heat transfer with nanofluids and its applications in heat exchangers -- 1 Introduction -- 2 Application of nanofluids in solar collectors -- 2.1 Direct absorption solar collectors (DASC) -- 2.2 Flat plate solar collectors (FPSC) -- 2.3 Evacuated tube solar collectors (ETSC) -- 3 Application of nanofluids for fouling retardation and heat transfer enhancement -- 3.1 Impact of multiwall carbon nanotubes (MWCNT) based nanofluid on retardation of fouling and enhancement of heat transfer -- 3.2 Impact of graphene nanoplatelet-based nanofluid (GNP) on fouling retardation and heat transfer enhancement -- 4 Applications of nanofluids in annular flow heat exchangers -- 4.1 Nanofluids behavior in an annular flow heat exchanger -- 5 Conclusion -- Acknowledgements -- References -- Chapter Four: Programmable micro- and nano-engineered liquid metals in thermal engineering applications -- 1 Introduction -- 2 Morphological forms -- 2.1 Bulk (droplet) form -- 2.2 Particle form -- 2.3 Liquid metal marbles -- 3 Processing techniques -- 3.1 Drop-on-demand -- 3.2 Molding -- 3.3 Microfluidics. , 3.4 Sonication -- 3.5 Shearing -- 3.6 Liquid metal marbles -- 4 Actuation principles and associated characteristics of liquid metals -- 4.1 Mechanical actuation -- 4.2 Electrical actuation -- 4.3 Electrocapillarity -- 4.3.1 Continuous electrowetting -- 4.3.2 Electrowetting-on-dielectric -- 4.3.3 Electrochemically-controlled-capillarity -- 4.4 Magnetic actuation -- 4.5 Optical actuation -- 4.6 Acoustic actuation -- 4.7 Thermal actuation -- 4.8 Chemical actuation -- 4.9 Self-propelling actuation -- 4.10 Multi-stimuli actuation -- 5 Applications of liquid metals in thermal engineering -- 5.1 Phototherapeutic -- 5.2 Thermal switches -- 5.3 Photothermal actuators -- 5.4 Energy harvesting -- 5.5 Microfluidic thermal management -- 5.6 Thermal interface materials -- 5.7 Composite materials -- 5.8 Microencapsulated phase change materials -- 6 Our perspective and future directions -- References -- Chapter Five: Thermal transport in engineered cellular materials: A contemporary perspective -- 1 Introduction -- 2 Stochastic foams -- 2.1 Early investigations -- 2.2 Looking ahead -- 3 Pore-scale flow and thermal transport in stochastic cellular materials -- 4 Pore-scale flow and thermal transport in architectured cellular materials: strut-based -- 4.1 Forced convection with air as working fluid -- 4.1.1 Strut-based additively manufactured lattice structures -- 4.1.1.1 BCC, FCC lattices and their variations -- 4.1.1.2 Kelvin, Octet, face-diagonal cube, cube unit cell-based lattices -- 4.2 Forced convection with some other working fluids (water, hydrocarbons, particles, supercritical carbon dioxide) -- 4.3 Architectured cellular materials for applications requiring conformal cooling solutions -- 5 Concluding remarks -- References. , Chapter Six: Heat transfer analysis of partially ionized hybrid nanofluids flow comprising magnetic/non-magnetic nanoparticles in an annular region of two homocentric inclined cylinders -- 1 Introduction -- 2 Mathematical formulation -- 2.1 Physical quantities -- 2.2 Numerical analysis -- 2.3 Outcomes with discussion -- 2.4 Future areas of research -- 3 Conclusions -- References -- Back Cover.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Heat -- Transmission. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (209 pages)
    Edition: 1st ed.
    ISBN: 9780123965103
    Series Statement: Issn Series
    DDC: 621.4022
    Language: English
    Note: Front Cover -- Advances in Heat Transfer -- Copyright -- Contents -- Contributors -- Preface -- Chapter One - Prediction of the Influence of Energetic Chemical Reactions on Forced Convective Heat Transfer -- 1. INTRODUCTION -- 2. PRIOR WORK -- 3. A MODEL FOR NEW NUMERICAL SOLUTIONS -- 4. CLOSED-FORM ANALYSES -- 5. NEW NUMERICAL SOLUTIONS -- 6. CONCLUSIONS -- 7. APOLOGY -- ACKNOWLEDGMENT -- REFERENCES -- Chapter Two - Advances and Outlooks of Heat Transfer Enhancement by Longitudinal Vortex Generators -- Abstract -- Nomenclature -- 1. INTRODUCTION -- 2. CHARACTERISTICS OF HEAT TRANSFER ENHANCEMENT BY LVGS -- 3. APPLICATIONS OF LVGS FOR HEAT TRANSFER ENHANCEMENT -- 4. CONCLUSIONS AND OUTLOOKS -- ACKNOWLEDGMENTS -- REFERENCES -- SUBJECT INDEX -- AUTHOR INDEX.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...