GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Book
    Book
    Cambridge [u.a.] : Cambridge Univ. Press
    Keywords: Geophysics Methodology ; Lehrbuch ; Angewandte Geophysik ; Umweltgeophysik ; Oberflächennähe ; Geophysik ; Prospektion ; Methode ; Geophysik ; Methodologie
    Type of Medium: Book
    Pages: XIV, 403 S. , Ill., graph. Darst. , 25 cm
    Edition: 1. publ.
    ISBN: 9781107018778
    DDC: 550
    RVK:
    RVK:
    Language: English
    Note: Literaturverz. S. 379 - 399 und Index , Machine generated contents note: Preface; Acknowledgments; 1. Introduction; 2. Data analysis; 3. Magnetics; 4. Electrical resistivity method; 5. Induced polarization and self-potential; 6. Seismic reflection and refraction; 7. Seismic surface wave analysis; 8. Electromagnetic induction; 9. Ground-penetrating radar; 10. Emerging techniques; 11. Linear inversion; 12. Nonlinear inversion: local methods; 13. Nonlinear inversion: global methods; Appendix A. Shannon sampling theorem; Appendix B. Solution of Laplace's equation in spherical coordinates; Appendix C. The linear t--p transformation of seismic data; Appendix D. Horizontal loop over a conducting halfspace; Appendix E. Radar TE waveguide mode equations; References; Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    New York :Cambridge University Press,
    Keywords: Geophysics -- Methodology. ; Electronic books.
    Description / Table of Contents: This refreshing, up-to-date book explores the latest developments in near-surface techniques and the foundations of interpretation theory, using simple physical terms, intermediate-level mathematics and illustrative case studies. This advanced-undergraduate and graduate-level geophysics textbook is also a valuable reference for practising geophysicists, geologists, hydrologists, archaeologists, and civil and geotechnical engineers.
    Type of Medium: Online Resource
    Pages: 1 online resource (444 pages)
    Edition: 1st ed.
    ISBN: 9781107347854
    DDC: 550
    Language: English
    Note: Intro -- Contents -- Preface -- Acknowledgments -- 1 Introduction -- 1.1 Workflow -- 1.2 Some applications of near-surface geophysics -- 1.3 Communication of uncertainties -- 1.4 Outline of the book -- 2 Data analysis -- 2.1 Information -- 2.2 Sensors -- 2.3 Frequency response -- 2.4 Discrete Fourier transform -- 2.5 Filtering -- 2.6 Convolution -- 2.7 Sampling and aliasing -- 2.8 Data windows and spectral analysis -- 2.9 De-spiking time series -- 2.10 Continuous wavelet transform (CWT) -- Problems -- 3 Magnetics -- 3.1 Introduction -- 3.2 Fundamentals -- 3.3 Instrumentation -- 3.4 Magnetic gradiometry -- 3.5 Geomagnetic field -- 3.6 Total-field anomaly -- 3.7 Interpretation of magnetic anomalies -- 3.8 Reduction to the pole -- 3.9 Depth rules -- 3.10 Magnetic properties of rocks, soils, and buried steel objects -- 3.11 Remanent magnetization -- 3.12 Image-enhancement filters -- 3.13 Upward continuation -- 3.14 Euler and Werner deconvolution -- 3.15 Illustrative case histories -- Problems -- 4 Electrical resistivity method -- 4.1 Introduction -- 4.2 Fundamentals -- 4.3 Sensitivity functions -- 4.4 Multi-layer models -- 4.5 Azimuthal resistivity -- 4.6 Resistivity pseudosections -- 4.7 Electrical-resistivity tomography (ERT) -- 4.8 Electrical properties of rocks -- 4.9 Electrical-hydraulic field-scale correlation studies -- 4.10 Optimal electrode placement -- 4.11 Underwater resistivity techniques -- 4.12 Illustrative case histories -- Problems -- 5 Induced polarization and self-potential -- 5.1 Induced polarization (IP): introduction -- 5.2 Phenomenological resistivity dispersion models -- 5.3 Electrode, membrane, and interfacial polarization -- 5.4 IP response and subsurface geological processes -- 5.5 Non-polarizing electrodes -- 5.6 IP illustrated case history -- 5.7 Self-potential (SP): introduction -- 5.8 Physical mechanisms. , 5.9 Interpretation of SP measurements -- 5.10 Continuous wavelet transform analysis -- 5.11 SP illustrated case history -- Problem -- 6 Seismic reflection and refraction -- 6.1 Introduction -- 6.2 Stress and strain -- 6.3 Wave motion -- 6.4 Seismic waves and elastic moduli -- 6.5 Seismic velocity of geomaterials -- 6.6 Reflection and refraction at an interface -- 6.7 Diffraction -- 6.8 Analysis of idealized reflection seismograms -- 6.9 Vertical and horizontal resolution -- 6.10 Common midpoint profiling -- 6.11 Dip moveout -- 6.12 Attenuation -- 6.13 Seismic refraction -- 6.14 Practical considerations -- 6.15 Seismic data processing -- 6.16 Ray-path modeling -- 6.17 Illustrated case studies -- Problems -- 7 Seismic surface-wave analysis -- 7.1 Rayleigh waves -- 7.2 Dispersion -- 7.3 Rayleigh-wave propagation in a multi-layer system -- 7.4 Spectral analysis of surface waves (SASW) -- 7.5 Multichannel analysis of surface waves (MASW) -- 7.6 Inversion of R-wave dispersion characteristics -- 7.7 Microtremor and passive studies -- 7.8 Illustrated case histories -- 8 Electromagnetic induction -- 8.1 Introduction -- 8.2 Fundamentals -- 8.3 The skin effect -- 8.4 Inductively coupled LR circuits -- 8.5 Terrain conductivity meters -- 8.6 Time-domain EM induction -- 8.7 Finite-source excitation of a layered Earth -- 8.8 Plane-wave excitation methods: VLF, RMT, CSMT -- 8.9 Airborne electromagnetics -- 8.10 EM responses of rough geological media -- 8.11 Anisotropy -- 8.12 Illustrated case histories -- Problems -- 9 Ground-penetrating radar -- 9.1 Fundamentals -- 9.2 Dielectric constant and electrical conductivity -- 9.3 Dielectric properties of rocks and soils -- 9.4 Resolution -- 9.5 Data acquisition -- 9.6 Basic GPR data processing -- 9.7 Advanced GPR data processing -- 9.8 Electromagnetic plane waves -- 9.9 Plane-wave reflection from an interface. , 9.10 Analysis of thin beds -- 9.11 GPR antennas -- 9.12 GPR radiation patterns -- 9.13 Target polarization -- 9.14 GPR guided waves -- 9.15 GPR illustrative case histories -- Problems -- 10 Emerging techniques -- 10.1 Surface nuclear magnetic resonance -- 10.2 Time-lapse microgravity -- 10.3 Induced-seismicity studies -- 10.4 Landmine discrimination -- 10.5 Passive GPR interferometry -- 10.6 Seismoelectric coupling -- 11 Linear inversion -- 11.1 Introduction -- 11.2 Linear-parameter estimation -- 11.3 Least-squares solution -- 11.4 Example: near-surface magnetization -- 11.5 Example: deconvolution -- 11.6 Data covariance -- 11.7 The null space -- 11.8 The minimum-norm solution -- 11.9 The trade-off curve -- 11.10 Regularization -- 11.11 Example: EM loop-loop sounding -- 11.12 Singular-value decomposition -- Problems -- 12 Non-linear inversion: local methods -- 12.1 Introduction -- 12.2 Steepest-descent method -- 12.3 Non-linear least-squares method -- 12.4 Levenberg-Marquardt method -- 12.5 Quasi-Newton methods -- 12.6 Conjugate-gradient method -- 12.7 Example: seismic traveltime tomography -- 12.8 Bayesian inversion -- 12.9 Auxiliary sensitivity analysis -- Problems -- 13 Non-linear inversion: global methods -- 13.1 Markov chain Monte Carlo (MCMC) method -- 13.2 Simulated-annealing (SA) method -- 13.3 Genetic-algorithm (GA) method -- 13.4 Neural-network (NN) methods -- 13.5 The self-organizing map (SOM) -- Problem -- Appendix A Shannon sampling theorem -- Appendix B Solution of Laplace´s equation in spherical coordinates -- Appendix C The linear tau-p transformation of seismic data -- Appendix D Horizontal loop over a conducting halfspace -- Dirac delta function in cylindrical coordinates -- Source current density for a horizontal loop -- Hankel transforms -- Appendix E Radar TE waveguide mode equations -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...