GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Basel :Springer Basel AG,
    Keywords: Free radicals (Chemistry)-Analysis. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (314 pages)
    Edition: 1st ed.
    ISBN: 9783034890748
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1327
    Keywords: Key words Ribonucleotide reductase ; Iron metabolism ; Escherichia coli
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract  Protein R2, the small component of ribonucleotide reductase from Escherichia coli, contains a diferric center and a catalytically essential tyrosyl radical. In vitro, this radical can be produced in the protein from two inactive forms, metR2, containing an intact diiron center and lacking the tyrosyl radical, and apoR2, lacking both iron and the radical. While activation of apoR2 requires only a source of ferrous iron and exposure to O2, activation of metR2 was achieved using a multienzymatic system consisting of an NAD(P)H:flavin oxidoreductase, superoxide dismutase and a poorly defined protein fraction, named fraction b (Fontecave M, Eliasson R, Reichard P (1987) J Biol Chem 262 : 12325–12331). In both reactions, reduced R2, containing a diferrous center, is a key intermediate which is subsequently converted to active R2 during reaction with O2. By in vivo labeling of E. coli with radioactive 59Fe, we show that fraction b contains iron. Depletion of the iron in fraction b inactivates it, and fraction b can be substituted for by ferric citrate solutions. Furthermore, aqueous Fe2+ in the presence of dithiothreitol is able to convert metR2 into reduced R2. Therefore we propose that the function of fraction b is to provide, in association with the flavin reductase, ferrous iron for reduction of the endogenous diiron center. Since fraction b is not a single well-defined protein, it remains to be shown whether, in vivo, that function resides in a specific protein. Exogenous iron can thus participate in activation of both apoR2 and metR2, but it is incorporated into R2 only in the former case. A unifying mechanism is proposed.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...