GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Electrochemistry.  (1)
  • 1
    Online-Ressource
    Online-Ressource
    Singapore :Springer Singapore Pte. Limited,
    Schlagwort(e): Electrochemistry. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (437 pages)
    Ausgabe: 1st ed.
    ISBN: 9789811064067
    Serie: The Handbook of Environmental Chemistry Series ; v.61
    DDC: 628.162
    Sprache: Englisch
    Anmerkung: Intro -- The Handbook of Environmental Chemistry Also Available Electronically -- Series Preface -- Preface -- Contents -- Electro-Fenton Process: Fundamentals and Reactivity -- 1 Introduction -- 2 Conventional Fenton Process -- 3 Hydrogen Peroxide Electrogeneration -- 3.1 Cathode Materials -- 3.2 Divided Cells -- 3.3 Undivided Cells -- 4 Electro-Fenton Process -- 4.1 Cell Configuration -- 4.2 Iron Catalysts -- 4.3 Anode Behavior and Electrolyte Composition -- 4.4 Operation Variables -- 5 Conclusions -- References -- Bio-electro-Fenton: A New Combined Process - Principles and Applications -- 1 Introduction -- 2 Biological Methods for the Degradation of Organic Emerging Contaminants -- 3 The Coupling of Biological Processes with AOPs -- 3.1 AOPS as Pre- or Post-treatment for Biological Processes -- 3.2 Biodegradability Indicators -- 4 The Electro-Fenton Process -- 5 Bio-electro-Fenton Process -- 5.1 Fundamentals of Bio-EF Process -- 5.2 Degradation Pathways During the Bio-EF Process -- 5.3 Experimental Features and Operating Conditions -- 5.4 Economic Aspects -- 6 Concluding Remarks and Perspectives -- References -- The Electro-peroxone Technology as a Promising Advanced Oxidation Process for Water and Wastewater Treatment -- 1 Introduction -- 2 Principles and Advantages of the Electro-peroxone Process -- 2.1 Cathodic Reaction Mechanisms During the Electro-peroxone Process -- 2.2 Bulk Reaction Mechanism During the Electro-peroxone Process -- 2.3 Photoelectro-peroxone Process -- 3 Applications of the Electro-peroxone Process for Water and Wastewater Treatment -- 3.1 Electro-peroxone for Wastewater Treatment -- 3.2 Electro-peroxone for Advanced Wastewater Treatment -- 3.3 Electro-peroxone for Drinking Water Treatment -- 3.4 Electro-peroxone Regeneration of Spent Activated Carbon -- 4 Concluding Remarks. , 4.1 Potentials of the Electro-peroxone Process for Water and Wastewater Treatment -- 4.2 Future Research Directions -- References -- Heterogeneous Electro-Fenton Process: Principles and Applications -- 1 Introduction -- 2 Importance of Heterogeneous EF Process -- 3 Heterogeneous Electro-Fenton Catalysts -- 3.1 Magnetite (Fe3O4) -- 3.2 Zero-Valent Iron -- 3.3 Pyrite -- 3.4 Sludge Containing Iron -- 3.5 Iron-Loaded Alginate Beads -- 3.6 Iron-Loaded Carbon -- 3.7 Iron-Loaded Zeolite -- 3.8 Iron-Loaded Sepiolite -- 4 Pollutant Degradation Mechanism -- 5 Conclusions and Perspectives -- References -- Modified Cathodes with Carbon-Based Nanomaterials for Electro-Fenton Process -- 1 Introduction -- 2 Modification of Cathodes with Carbon-Based Nanomaterials for EF Process -- 2.1 Carbon Nanotubes -- 2.2 Graphene Family -- 2.3 Mesoporous Carbons -- 3 Conclusion -- References -- Advances in Carbon Felt Material for Electro-Fenton Process -- 1 Introduction -- 2 Characterization of CF Material -- 3 Method to Modify CF Material -- 3.1 Chemical Treatment -- 3.2 Thermal and Plasma Treatment -- 3.3 Graphene Based Modification -- 3.4 Carbon Nanotube-Based Modification -- 3.5 Polymer-Based Modification -- 3.6 Zeolite-Based Modification -- 4 Carbon Felt-Based Material for Wastewater Treatment by EF Process -- 4.1 Carbon Felt for EF Process -- 4.2 Modified EF Systems Using Carbon Felt Cathodes -- 4.2.1 Modified Felt Cathodes for Homogeneous EF -- 4.2.2 Modified Felt Cathodes for Heterogeneous EF -- 4.2.3 Hybrid EF System Using Carbon Felt Cathodes -- 4.2.4 Industrial Applications -- 5 Conclusion -- References -- Cathode Modification to Improve Electro-Fenton Performance -- 1 Introduction -- 2 Chemical Modification of Graphite Felt -- 2.1 Chemical Modification Procedure and Performance -- 2.2 Cathode Characterization -- 2.3 Electro-Fenton Application. , 3 Anodic Oxidation of Graphite Felt -- 3.1 Electrochemical Modification of Cathode -- 3.2 Electrode Characteristics -- 3.3 EF Application -- 4 Graphite Felt Modification with Carbon Black -- 4.1 Cathode Preparation -- 4.2 Cathode Characteristics -- 4.3 EF Application -- 5 Heterogeneous EF -- 5.1 Cathode Preparation -- 5.2 Cathode Characteristics -- 5.3 EF Application -- 6 Summary and Outlook -- References -- Conventional Reactors and Microreactors in Electro-Fenton -- 1 Introduction -- 2 Tank Cell -- 3 Parallel-Plate Flow Cell -- 4 Moving Three-Dimensional Electrodes -- 5 Pressurized Reactors -- 6 Microreactors -- 7 Conclusions -- References -- Cost-Effective Flow-Through Reactor in Electro-Fenton -- 1 Introduction -- 2 The Mechanism of Flow-Through Reactor -- 2.1 Mass Transfer -- 2.2 Adsorption, Desorption, and Oxidation -- 2.3 Electron Transfer -- 3 Cathode Material -- 3.1 Carbon Nanotubes (CNTs) -- 3.2 Carbon Fiber -- 3.3 Graphite Felt -- 3.4 Carbonaceous Materials -- 4 The Application of Flow-Through EF System -- 4.1 The Advantages of Flow-Through EF -- 4.2 Stability of the Flow-Through EF -- 4.3 Influence of Operating Parameters -- 4.3.1 Influence of Current -- 4.3.2 Influence of Initial pH -- 4.3.3 Influence of Flow Rate -- 4.4 Combined Flow-Through EF Reactor -- 5 Coupling of Flow-Through EF with Other Water Treatment Technology -- 5.1 Flow-Through EF/Adsorption -- 5.2 Flow-Through Peroxi-Coagulation -- 5.3 Flow-Through EF + Ozone -- 6 Summary and Perspective -- References -- Reactor Design for Advanced Oxidation Processes -- 1 Introduction -- 2 Design and Basic Considerations -- 2.1 Electrode Materials -- 2.2 Cell Potential -- 2.3 Performance -- 3 Design and Characterization of Electrochemical Reactors -- 3.1 Experimental Characterization -- 3.1.1 Pressure Drop and Non-ideal Flow Dispersion -- 3.1.2 Mass Transport Characterization. , 3.2 Theoretical Characterization (Modeling and Simulation) -- 3.2.1 Simulation of Hydrodynamics in a Filter-Press Type Electrolyzer -- Laminar Flow (Empty Channel) -- Turbulent Flow (Filled Channel) -- Results and Discussion -- 3.2.2 Simulations of the Secondary Current Distribution Along the BDD Plate During the Formation of Hydroxyl Radicals from the... -- Formulation of the Numerical Simulation -- Results and Discussion -- 3.2.3 The Modeling of a Solar Photoelectro-Fenton Flow Plant -- Mathematical Model -- Results and Discussion -- 4 Further Developments and Perspectives -- References -- Modeling of Electro-Fenton Process -- 1 Introduction -- 1.1 The Technological Challenge of Wastewater Treatment -- 2 Fenton Process -- 2.1 Hydroxylation -- 2.2 Wastewater Treatment -- 2.3 Kinetic Modeling -- 2.3.1 Multistep Mechanistic Rate Laws -- 2.3.2 Empirical Kinetic Modeling -- 3 Electro-Fenton Processes -- 3.1 Wastewater Treatment -- 3.2 Activation of H2O2 by Iron Ions -- 3.3 Degradation of Organics by Fenton and EF Process -- 4 Modeling of Electro-Fenton Process -- 4.1 Multistep Mechanistic Rate Laws -- 4.2 Empirical Kinetic Modeling -- 4.2.1 Experimental Design Methodology -- 4.2.2 Artificial Neural Networks -- 4.2.3 Semiempirical Kinetic Models -- 5 Conclusions -- References -- Solar-Assisted Electro-Fenton Systems for Wastewater Treatment -- 1 Introduction -- 2 Fundamentals of the SPEF Method -- 3 Operation Parameters -- 4 Degradation of Pure Organic Pollutants -- 4.1 Industrial Chemicals -- 4.2 Pesticides -- 4.3 Dyes -- 4.4 Pharmaceuticals -- 5 Autonomous Solar Flow Plant -- 6 Coupled Solar-Assisted Electro-Fenton Treatments -- 7 Conclusions -- References -- Electro-Fenton Applications in the Water Industry -- 1 Electro-Fenton: A ``Newcomer´´ in the Water Industry -- 2 Electro-Fenton Applications in the Water and Wastewater Sector. , 2.1 Purification of Potable Water Sources -- 2.2 Treatment of Secondary Municipal Effluents -- 2.3 Chemical Industry Wastewater -- 2.3.1 Pharmaceutical Industry -- 2.3.2 Pulp and Paper Industry -- 2.3.3 Textile Industry -- 2.4 Treatment of Agro-Industrial Wastewater -- 2.5 Remediation of Landfill Leachate -- 2.6 Other Applications -- 3 Patent Survey -- 4 Design and Operation Aspects Towards EF Optimization -- 4.1 Design of EF Reactors -- 4.1.1 Towards Scale-Up -- 4.2 Optimization of EF Operation -- 4.2.1 Operating pH -- 4.2.2 Applied Potential or Electric Current -- 4.2.3 Air/O2 Addition -- 4.2.4 Catalyst Addition -- 4.2.5 Feed Flow Rate -- 4.2.6 Operating Temperature -- 5 Recommendations for Future Research -- References -- The Application of Electro-Fenton Process for the Treatment of Artificial Sweeteners -- 1 Introduction -- 2 Treatment of ASs by Electro-Fenton Process -- 2.1 Oxidation Kinetics of ASs -- 2.2 Determination of the Rate Constants for ASs by OH -- 2.3 Mineralization of ASs in Electro-Fenton Process -- 2.4 Evaluation of Mineralization Current Efficiency (MCE) and Energy Consumption (EC) -- 2.5 Identification and Evolution of Short-Chain Carboxylic Acids and Inorganic Ions -- 2.6 Toxicity Assessment During Treatment -- 3 Conclusions -- References -- Soil Remediation by Electro-Fenton Process -- 1 Introduction -- 2 Influence of Operating Parameters -- 2.1 Influence of Electrode Materials -- 2.2 Influence of Current Density -- 2.3 Influence of Catalyst (Fe2+) Concentration -- 3 Effect of the Matrix -- 3.1 Influence of Nature of Extracting Agent and Possibility of Recovery -- 3.2 Influence of pH -- 3.3 Synthetic vs. Real Effluent -- 4 Impacts on Ecotoxicity, Biodegradability, and Soil Respirometry -- 5 Energy Considerations and Concluding Remarks -- References -- Index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...