GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Dordrecht :Springer Netherlands,
    Keywords: Turbulent diffusion (Meteorology)--Measurement. ; Analysis of covariance. ; Eddy correlation. ; Micrometeorology. ; Atmosphärische Turbulenz. swd. ; Electronic books.
    Description / Table of Contents: This handbook provides exhaustive treatment of eddy covariance measurement. The chapters cover measuring fluxes using eddy covariance techniques, from the tower installation and system dimensioning to data collection, correction and analysis.
    Type of Medium: Online Resource
    Pages: 1 online resource (451 pages)
    Edition: 1st ed.
    ISBN: 9789400723511
    Series Statement: Springer Atmospheric Sciences Series
    DDC: 551.51
    Language: English
    Note: Intro -- Eddy Covariance -- Preface -- Contents -- Contributors -- Chapter 1: The Eddy Covariance Method -- 1.1 History -- 1.2 Preliminaries -- 1.2.1 Context of Eddy Covariance Measurements -- 1.2.2 Reynolds Decomposition -- 1.2.3 Scalar Definition -- 1.3 One Point Conservation Equations -- 1.3.1 Dry Air Mass Conservation (Continuity) Equation -- 1.3.2 Momentum Conservation Equation -- 1.3.3 Scalar Conservation Equation -- 1.3.4 Enthalpy Equation -- 1.4 Integrated Relations -- 1.4.1 Dry Air Budget Equation -- 1.4.2 Scalar Budget Equation (Generalized Eddy Covariance Method) -- 1.5 Spectral Analysis -- 1.5.1 Spectral Analysis of Turbulence -- 1.5.2 Spectral Analysis of Atmospheric Turbulence -- 1.5.3 Sensor Filtering -- 1.5.4 Impacts of Measurement Height and Wind Velocity -- References -- Chapter 2: Measurement, Tower, and Site Design Considerations -- 2.1 Introduction -- 2.2 Tower Considerations -- 2.2.1 Theoretical Considerations for Tower Design -- 2.2.1.1 Diverse Ecosystems and Environments -- 2.2.1.2 Physical Effects on Surrounding Flows Due to the Presence of Tower Structure -- 2.2.1.3 Size of Horizontal Supporting Boom -- 2.2.1.4 Tower Deflection and Oscillations -- 2.2.1.5 Recirculation Zone at the Opening in a Tall Canopy -- 2.2.2 Tower Design and Science Requirements -- 2.2.2.1 Tower Location Requirements -- 2.2.2.2 Tower Structure Requirements -- 2.2.2.3 Tower Height Requirements -- 2.2.2.4 Tower Size Requirements -- 2.2.2.5 Instrument Orientation Requirements -- 2.2.2.6 Tower Installation and Site Impact Requirements -- 2.3 Sonic Anemometer -- 2.3.1 General Principles -- 2.3.2 Problems and Corrections -- 2.3.3 Requirements for Sonic Choice, Positioning, and Use -- 2.4 Eddy CO2/H2O Analyzer -- 2.4.1 General Description -- 2.4.2 Closed-Path System -- 2.4.2.1 Absolute and Differential Mode. , 2.4.2.2 Tubing Requirements for Closed-Path Sensors -- 2.4.2.3 Calibration for CO2 -- 2.4.2.4 Water Vapor Calibration -- 2.4.3 Open-Path Systems -- 2.4.3.1 Installation and Maintenance -- 2.4.3.2 Calibration -- 2.4.4 Open and Closed Path Advantages and Disadvantages -- 2.4.5 Narrow-Band Spectroscopic CO2 Sensors -- 2.5 Profile Measurement -- 2.5.1 Requirements for Measurement Levels -- 2.5.2 Requirements for Profile Mixing Ratio Measurement -- References -- Chapter 3: Data Acquisition and Flux Calculations -- 3.1 Data Transfer and Acquisition -- 3.2 Flux Calculation from Raw Data -- 3.2.1 Signal Transformation in Meteorological Units -- 3.2.1.1 Wind Components and Speed of Sound from the Sonic Anemometer -- 3.2.1.2 Concentration from a Gas Analyzer -- 3.2.2 Quality Control of Raw Data -- 3.2.3 Variance and Covariance Computation -- 3.2.3.1 Mean and Fluctuation Computations -- 3.2.3.2 Time Lag Determination -- 3.2.4 Coordinate Rotation -- 3.2.4.1 Requirements for the Choice of the Coordinate Frame and Its Orientation -- 3.2.4.2 Coordinate Transformation Equations -- 3.2.4.3 Determination of Rotation Angles -- 3.3 Flux Determination -- 3.3.1 Momentum Flux -- 3.3.2 Buoyancy Flux and Sensible Heat Flux -- 3.3.3 Latent Heat Flux and Other Trace Gas Fluxes -- 3.3.4 Derivation of Additional Parameters -- References -- Chapter 4: Corrections and Data Quality Control -- 4.1 Flux Data Correction -- 4.1.1 Corrections Already Included into the Raw Data Analysis (Chap. 3) -- 4.1.2 Conversion of Buoyancy Flux to Sensible Heat Flux (SND-correction) -- 4.1.3 Spectral Corrections -- 4.1.3.1 Introduction -- 4.1.3.2 High-Frequency Loss Corrections -- 4.1.3.3 Low-Cut Frequency -- 4.1.4 WPL Corrections -- 4.1.4.1 Introduction -- 4.1.4.2 Open-Path Systems -- 4.1.4.3 WPL and Imperfect Instrumentation -- 4.1.4.4 Closed-Path Systems -- 4.1.5 Sensor-Specific Corrections. , 4.1.5.1 Flow Distortion Correction of Sonic Anemometers -- 4.1.5.2 Correction Due to Sensor Head Heating of the Open-Path Gas Analyzer LiCor 7500 -- 4.1.5.3 Corrections to the Krypton Hygrometer KH20 -- 4.1.5.4 Corrections for CH4 and N2O Analyzers -- 4.1.6 Nonrecommended Corrections -- 4.1.7 Overall Data Corrections -- 4.2 Effect of the Unclosed Energy Balance -- 4.2.1 Reasons for the Unclosed Energy Balance -- 4.2.2 Correction of the Unclosed Energy Balance -- 4.3 Data Quality Analysis -- 4.3.1 Quality Control of Eddy Covariance Measurements -- 4.3.2 Tests on Fulfilment of Theoretical Requirements -- 4.3.2.1 Steady State Tests -- 4.3.2.2 Test on Developed Turbulent Conditions -- 4.3.3 Overall Quality Flag System -- 4.4 Accuracy of Turbulent Fluxes After Correction and Quality Control -- 4.5 Overview of Available Correction Software -- References -- Chapter 5: Nighttime Flux Correction -- 5.1 Introduction -- 5.1.1 History -- 5.1.2 Signs Substantiating the Night Flux Error -- 5.1.2.1 Comparison with Bottom Up Approaches -- 5.1.2.2 Sensitivity of Flux to Friction Velocity -- 5.1.3 The Causes of the Problem -- 5.2 Is This Problem Really Important? -- 5.2.1 In Which Case Should the Night Flux Error Be Corrected? -- 5.2.2 What Is the Role of Storage in This Error? -- 5.2.3 What Is the Impact of Night Flux Error on Long-Term Carbon Sequestration Estimates? -- 5.2.4 What Is the Impact of the Night Flux Error on Functional Relationships? -- 5.2.5 What Is the Impact of the Night Flux Error on Other Fluxes? -- 5.3 How to Implement the Filtering Procedure? -- 5.3.1 General Principle -- 5.3.2 Choice of the Selection Criterion -- 5.3.3 Filtering Implementation -- 5.3.4 Evaluation -- 5.4 Correction Procedures -- 5.4.1 Filtering=+Gap Filling -- 5.4.2 The ACMB Procedure -- 5.4.2.1 History -- 5.4.2.2 Procedure -- 5.4.2.3 Evaluation -- References. , Chapter 6: Data Gap Filling -- 6.1 Introduction -- 6.2 Gap Filling: Why and When Is It Needed? -- 6.3 Gap-Filling Methods -- 6.3.1 Meteorological Data Gap Filling -- 6.3.2 General Rules and Strategies (Long Gaps) -- 6.3.2.1 Sites with Management and Disturbances -- 6.3.3 Methods Description -- 6.3.3.1 Mean Diurnal Variation -- 6.3.3.2 Look-Up Tables -- 6.3.3.3 Artificial Neural Networks -- 6.3.3.4 Nonlinear Regressions -- 6.3.3.5 Process Models -- 6.4 Uncertainty and Quality Flags -- 6.5 Final Remarks -- References -- Chapter 7: Uncertainty Quantification -- 7.1 Introduction -- 7.1.1 Definitions -- 7.1.2 Types of Errors -- 7.1.3 Characterizing Uncertainty -- 7.1.4 Objectives -- 7.2 Random Errors in Flux Measurements -- 7.2.1 Turbulence Sampling Error -- 7.2.2 Instrument Errors -- 7.2.3 Footprint Variability -- 7.2.4 Quantifying the Total Random Uncertainty -- 7.2.5 Overall Patterns of the Random Uncertainty -- 7.2.6 Random Uncertainties at Longer Time Scales -- 7.3 Systematic Errors in Flux Measurements -- 7.3.1 Systematic Errors Resulting from Unmet Assumptions and Methodological Challenges -- 7.3.2 Systematic Errors Resulting from Instrument Calibration and Design -- 7.3.2.1 Calibration Uncertainties -- 7.3.2.2 Spikes -- 7.3.2.3 Sonic Anemometer Errors -- 7.3.2.4 Infrared Gas Analyzer Errors -- 7.3.2.5 High-Frequency Losses -- 7.3.2.6 Density Fluctuations -- 7.3.2.7 Instrument Surface Heat Exchange -- 7.3.3 Systematic Errors Associated with Data Processing -- 7.3.3.1 Detrending and High-Pass Filtering -- 7.3.3.2 Coordinate Rotation -- 7.3.3.3 Gap Filling -- 7.3.3.4 Flux Partitioning -- 7.4 Closing Ecosystem Carbon Budgets -- 7.5 Conclusion -- References -- Chapter 8: Footprint Analysis -- 8.1 Concept of Footprint -- 8.2 Footprint Models for Atmospheric Boundary Layer -- 8.2.1 Analytical Footprint Models -- 8.2.2 Lagrangian Stochastic Approach. , 8.2.3 Forward and Backward Approach by LS Models -- 8.2.4 Footprints for Atmospheric Boundary Layer -- 8.2.5 Large-Eddy Simulations for ABL -- 8.3 Footprint Models for High Vegetation -- 8.3.1 Footprints for Forest Canopy -- 8.3.2 Footprint Dependence on Sensor and Source Heights -- 8.3.3 Influence of Higher-Order Moments -- 8.4 Complicated Landscapes and Inhomogeneous Canopies -- 8.4.1 Closure Model Approach -- 8.4.2 Model Validation -- 8.4.3 Footprint Estimation by Closure Models -- 8.4.4 Footprints over Complex Terrain -- 8.4.5 Modeling over Urban Areas -- 8.5 Quality Assessment Using Footprint Models -- 8.5.1 Quality Assessment Methodology -- 8.5.2 Site Evaluation with Analytical and LS Footprint Models -- 8.5.3 Applicability and Limitations -- 8.6 Validation of Footprint Models -- References -- Chapter 9: Partitioning of Net Fluxes -- 9.1 Motivation -- 9.2 Definitions -- 9.3 Standard Methods -- 9.3.1 Overview -- 9.3.2 Nighttime Data-Based Methods -- 9.3.2.1 Model Formulation: Temperature - Measurements -- 9.3.2.2 Reco Model Formulation -- 9.3.2.3 Challenges: Additional Drivers of Respiration -- 9.3.2.4 Challenges: Photosynthesis - Respiration Coupling and Within-Ecosystem Transport -- 9.3.3 Daytime Data-Based Methods -- 9.3.3.1 Model Formulation: The NEE Light Response -- 9.3.3.2 Challenges: Additional Drivers and the FLUXNET Database Approach -- 9.3.3.3 Unresolved Issues and Future Work -- 9.4 Additional Considerations and New Approaches -- 9.4.1 Oscillatory Patterns -- 9.4.2 Model Parameterization -- 9.4.3 Flux Partitioning Using High-Frequency Data -- 9.4.4 Flux Partitioning Using Stable Isotopes -- 9.4.5 Chamber-Based Approaches -- 9.4.6 Partitioning Water Vapor Fluxes -- 9.5 Recommendations -- References -- Chapter 10: Disjunct Eddy Covariance Method -- 10.1 Introduction -- 10.2 Theory -- 10.2.1 Sample Interval -- 10.2.2 Response Time. , 10.2.3 Definition of DEC.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...