GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Ecology-Data processing. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (442 pages)
    Edition: 1st ed.
    ISBN: 9783319969787
    Language: English
    Note: Intro -- Dedication -- Foreword -- Preface -- Acknowledgments -- Contents -- Contributors -- About the Editors -- Part I: Introduction -- Chapter 1: Machine Learning in Wildlife Biology: Algorithms, Data Issues and Availability, Workflows, Citizen Science, Code Sharing, Metadata and a Brief Historical Perspective -- 1.1 Introduction -- 1.2 Some Terminology -- 1.3 A Few Paragraphs on the History of Machine Learning -- 1.4 Machine Learning in Ecology and Wildife Biology to Date -- 1.5 Algorithms as a Bottleneck for Wildlife Conservation -- 1.6 Data Issues and Availability Related to Data Mining and Machine Learning -- 1.7 Workflows -- 1.8 Citizen Science -- 1.9 A Great Future could be around the Corner, Waiting for you Online, and in the Wilderness of this World -- References -- Chapter 2: Use of Machine Learning (ML) for Predicting and Analyzing Ecological and 'Presence Only' Data: An Overview of Applications and a Good Outlook -- 2.1 Introduction -- 2.2 Popular and Widely Available Machine Learning Techniques -- 2.3 Applications of Machine Learning in Wildlife Biology -- 2.4 Strengths and Some Described Weaknesses of Machine Learning -- 2.5 A Case Example -- 2.6 Machine Learning in Climate Change Models and Other Complex Applications -- 2.7 Conclusions: Future Outlook and Topics Awaiting Research and Application for Machine Learning (ML) -- References -- Chapter 3: Boosting, Bagging and Ensembles in the Real World: An Overview, some Explanations and a Practical Synthesis for Holistic Global Wildlife Conservation Applications Based on Machine Learning with Decision Trees -- 3.1 Introduction -- 3.2 A Quick Refresher on Linear Models (LMs), Parsimony and Classification and Regression Trees (CARTs) -- 3.3 Boosting -- 3.3.1 What Boosting is in a Nutshell -- 3.3.2 Short History of 'Boosting' -- 3.3.3 Why is Boosting so Powerful? -- 3.4 Bagging. , 3.4.1 What Bagging is in a Nutshell -- 3.4.2 Short History of Bagging -- 3.4.3 Why Bagging is so Powerful -- 3.5 Ensemble Models -- 3.5.1 What is an Ensemble Model? -- 3.5.2 History of Ensemble Models -- 3.5.3 Why Ensemble Models are so Powerful -- 3.6 Model Applications and Inference -- 3.6.1 Boosting Experiences and Applications -- 3.6.2 Bagging Experiences and Applications -- 3.6.3 Ensembles -- 3.6.4 Precautionary, Pro-Active, and Predictive Models for Better Resource Conservation Management -- 3.7 A Commonly Heard Criticism and Misunderstanding of Machine Learning, and Characteristics of Man-Made Science and Conservation Driven by Reductionism -- 3.8 Synthesis and Outlook -- References -- Part II: Predicting Patterns -- Chapter 4: From Data Mining with Machine Learning to Inference in Diverse and Highly Complex Data: Some Shared Experiences, Intellectual Reasoning and Analysis Steps for the Real World of Science Applications -- 4.1 Introduction -- 4.2 Model Selection with Many Predictors as an Analysis Scheme and as a Major Platform for Statistical Testing, Prediction and Inference -- 4.3 Confront Models with Data: Moving towards an Evidence-Based Analysis -- 4.4 A Real-World Data and Analysis Workflow Example -- 4.4.1 Pre-Assumption (as Experienced in Real World Examples) -- 4.5 Real World Tools and Minimum Approaches to Start Data Mining and Predictions -- 4.6 A Set of Commonly Heard Criticisms and Comments for these Data Mining Steps and How to Answer them from a Machine Learning Aspect for Best inferences -- 4.7 On 'Best Professional Practices', Professional Bias, Ignorance, Misconduct, Professional Societies, Education and Culture: What is a Lie and Punishable Intent when underlying Methods Problems are well-known but are ignored? -- 4.8 Conclusion -- References. , Chapter 5: Ensembles of Ensembles: Combining the Predictions from Multiple Machine Learning Methods -- 5.1 Introduction -- 5.2 Methods -- 5.2.1 Data Set -- 5.2.2 Accuracy Assessment -- 5.2.3 Modeling Algorithms -- 5.3 Results and Discussion -- References -- Chapter 6: Machine Learning for Macroscale Ecological Niche Modeling - a Multi-Model, Multi-Response Ensemble Technique for Tree Species Management Under Climate Change -- 6.1 Introduction -- 6.2 Controlling Bias and Variance -- 6.3 Ensemble Learning Via Decision Trees -- 6.4 Ensemble Models -- 6.4.1 Bagging, Random Forest and Extreme Random Forests -- 6.4.2 Boosting Decision Trees -- 6.4.3 RuleFit -- 6.5 Multiple Abundances - Habitat Suitability -- 6.6 Explanatory Variables (Predictors) -- 6.7 Multi-Model Ensemble Approach -- 6.8 Results and Interpretation -- 6.8.1 Model Reliability -- 6.8.2 Prediction Confidence -- 6.8.3 Combined Habitat Quality and Prediction Confidence -- 6.8.4 Predictor Importance -- 6.9 Discussion -- 6.10 Conclusion -- References -- Chapter 7: Mapping Aboveground Biomass of Trees Using Forest Inventory Data and Public Environmental Variables within the Alaskan Boreal Forest -- 7.1 Introduction -- 7.2 Methods and Materials -- 7.2.1 Biomass Data -- 7.2.2 Environmental Factors -- 7.2.3 The Calibration and Validation Datasets -- 7.2.4 Statistical Methods -- 7.2.5 Predictive Maps -- 7.3 Results -- 7.3.1 Variable Selection and Importance -- 7.3.2 Random Forests Analysis Model Assessment -- 7.3.3 Influence of the Environmental Factors on Aboveground Forest Biomass -- 7.3.4 Regression Tree Analysis Model Assessment -- 7.3.5 Spatial Dependency of Aboveground Forest Biomass -- 7.3.6 Predicted Aboveground Forest Biomass Patterns -- 7.4 Discussion -- References -- Part III: Data Exploration and Hypothesis Generation with Machine Learning. , Chapter 8: 'Batteries' in Machine Learning: A First Experimental Assessment of Inference for Siberian Crane Breeding Grounds in the Russian High Arctic Based on 'Shaving' 74 Predictors -- 8.1 Introduction -- 8.2 Methods -- 8.2.1 Presence and Absence Points for Siberian Crane -- 8.2.2 GIS Predictors -- 8.2.3 'Battery' Runs in Salford System's Predictive Modeler (SPM7) -- 8.3 Results -- 8.3.1 Predictive Performance Metrics -- 8.3.2 Visual Assessment of Prediction Maps -- 8.4 Discussion -- Appendix 1: Details of 74 GIS Environmental layers Used in the Model Prediction (+ 3 Additional Internal Columns) -- Appendix 2 -- List of Top 20 Predictors, as identified by TreeNet ranking -- Appendix 3 -- Prediction Model Details for the Best Performing Model (the 'Kitchen sink model' with 74 predictors) -- Appendix 4 -- Prediction Map 3 for the 'BIO14 model' -- Prediction Map 4 for the 'TMax12BIO14 model' -- Prediction Map 5 for the 'Top5 model' -- Prediction Map 6 for the 'Top10 model' -- Prediction Map 7 for the 'Top29 model' -- Prediction Map 8 for the 'Top35 model' -- Prediction Map 9 for the 'Bottom 44 model' -- Prediction map 10 for the 'Leaving out top 3 interacting predictors model' -- References -- Chapter 9: Landscape Applications of Machine Learning: Comparing Random Forests and Logistic Regression in Multi-Scale Optimized Predictive Modeling of American Marten Occurrence in Northern Idaho, USA -- 9.1 Introduction -- 9.2 Methods -- 9.2.1 Study Area -- 9.2.2 Occurrence Data and Logistic Regression Model -- 9.2.3 Predictor Variables for Analysis -- 9.2.4 Modeling Approaches -- 9.2.5 Model Assessment -- 9.3 Results -- 9.3.1 Random Forests Univariate Scaling -- 9.3.2 Random Forests Multivariate Model -- 9.3.3 Model Comparison -- 9.3.4 Model Performance -- 9.4 Discussion -- 9.5 Conclusion -- References. , Chapter 10: Using Interactions among Species, Landscapes, and Climate to Inform Ecological Niche Models: A Case Study of American Marten (Martes americana) Distribution in Alaska -- 10.1 Introduction -- 10.1.1 Stochastic Gradient Boosting -- 10.1.2 Variable Interactions -- 10.1.3 Ecological Niche Models -- 10.2 Methods -- 10.2.1 Training Dataset -- 10.2.2 Model Iterations -- 10.2.3 Interaction Network Graphs -- 10.2.4 Landscape Predictions -- 10.3 Results -- 10.3.1 Varclus Analysis -- 10.3.2 Full Model -- 10.3.3 Top Sub-Models -- 10.3.4 Other Sub-Models -- 10.3.5 Spatial Models -- 10.4 Discussion -- 10.4.1 Parsimonious Versus Highly Interactive Models -- 10.4.2 High Level Categorical (HLC) Predictors -- 10.4.3 Interaction Effects -- 10.4.4 Predicted Marten distribution in Alaska -- 10.4.5 Conclusions and Suggested Practices -- References -- Chapter 11: Advanced Data Mining (Cloning) of Predicted Climate-Scapes and Their Variances Assessed with Machine Learning: An Example from Southern Alaska Shows Topographical Biases and Strong Differences -- 11.1 Introduction -- 11.2 Methods -- 11.2.1 GIS Data and Operations -- 11.2.2 Data Mining -- 11.3 Results -- 11.4 Discussion -- Appendix A Example Map of Data Sets Used for this Machine Learning Assessment of Climate Models: Adaptwest in July. Raw Climate Surface and All GIS Maps are available from the Authors on Request -- Appendix B Remaining Details of the TreeNet Model not shown in the text: (a) gains curve, and partial dependence plots for (b) proximity to road, (c) proximity to river -- References -- Chapter 12: Using TreeNet, a Machine Learning Approach to Better Understand Factors that Influence Elevated Blood Lead Levels in Wintering Golden Eagles in the Western United States -- 12.1 Methods -- 12.2 Results -- 12.3 Discussion -- References. , Part IV: Novel Applications of Machine Learning Beyond Species Distribution Models.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...