GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Saint Louis :Elsevier,
    Keywords: Earth sciences--Remote sensing. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (448 pages)
    Edition: 1st ed.
    ISBN: 9780128030318
    DDC: 550.285
    Language: English
    Note: Front Cover -- Sensitivity Analysis in Earth Observation Modelling -- Sensitivity Analysis in Earth Observation Modelling -- Copyright -- Dedication -- Contents -- List of Contributors -- Preface -- ABOUT THE COVER -- 1 - INTRODUCTION TO SA IN EARTH OBSERVATION (EO) -- 1 - OVERVIEW OF SENSITIVITY ANALYSIS METHODS IN EARTH OBSERVATION MODELING -- 1. INTRODUCTION -- 1.1 DEFINING THE MODEL OUTPUTS AND INPUTS FOR SENSITIVITY ANALYSIS -- 1.1.1 Defining Factor (or Parametric) Uncertainty -- 2. LOCAL SENSITIVITY ANALYSIS -- 2.1 CORRELATION ANALYSIS -- 2.2 REGRESSION ANALYSIS -- 3. GLOBAL SENSITIVITY ANALYSIS -- 3.1 ONE-AT-A-TIME SENSITIVITY ANALYSIS METHODS -- 3.2 THE MORRIS METHOD FOR FACTOR SCREENING -- 3.3 VARIANCE-BASED SENSITIVITY ANALYSIS -- 3.4 SAMPLING METHODS FOR GLOBAL SENSITIVITY ANALYSIS -- 3.4.1 Random Sampling -- 3.4.2 Stratified Sampling and the Latin Hypercube -- 3.4.3 Sampling for Sensitivity Indices -- 3.5 SURROGATE MODELS FOR GLOBAL SENSITIVITY ANALYSIS -- 3.5.1 Generalized Linear Modeling -- 3.5.2 Neural Networks -- 3.5.3 Direct Sensitivity Analysis of Surrogate Models -- 3.6 POLYNOMIAL CHAOS -- 3.7 GAUSSIAN PROCESS AND BAYES LINEAR EMULATION -- 4. GRAPHICAL METHODS FOR GLOBAL SENSITIVITY ANALYSIS -- 4.1 SCATTER PLOTS -- 4.2 PLOTTING THE RESPONSE SURFACE -- 4.3 PLOTTING THE SENSITIVITY INDICES -- 5. CONCLUSIONS -- REFERENCES -- 2 - MODEL INPUT DATA UNCERTAINTY AND ITS POTENTIAL IMPACT ON SOIL PROPERTIES -- 1. INTRODUCTION -- 2. A WORLD OF MODELS - HOW CAN THEY BE CLASSIFIED? -- 3. CAN WE TRUST MODELS? - MODEL ACCURACY AND THEIR SENSITIVITY TO INPUT DATA UNCERTAINTY -- 4. SELECTING THE MOST APPROPRIATE MODEL -- 5. WHY AND HOW TO ACCOUNT FOR MODELING UNCERTAINTIES CAUSED BY DIFFERENT INPUT DATA SOURCES -- 6. ASSESSING SENSITIVITY OF ENVIRONMENTAL MODELS. , 7. HOW SOIL TEXTURE MEASURED WITH VISIBLE-NEAR-INFRARED SPECTROSCOPY AFFECTS HYDROLOGICAL MODELING: A CASE STUDY -- 7.1 STUDY SITES AND INSTRUMENTS -- 7.2 SOIL SAMPLES -- 7.3 CHEMOMETRICS -- 7.4 IMPACT OF CHEMOMETRIC METHOD ON SOIL PREDICTION -- 7.5 DIFFERENT INSTRUMENTS, DIFFERENT SOIL PREDICTIONS? WHAT WAS FINALLY THE BEST SOIL PREDICTION ACCURACY? -- 7.6 WHAT DOES THIS FINALLY MEAN FOR OUR ENVIRONMENTAL MODELING? -- 8. WHAT DID WE LEARN? -- REFERENCES -- 2 - LOCAL SA METHODS: CASE STUDIES -- 3 - LOCAL SENSITIVITY ANALYSIS OF THE LANDSOIL EROSION MODEL APPLIED TO A VIRTUAL CATCHMENT -- 1. INTRODUCTION -- 2. MATERIALS AND METHODS -- 2.1 MODEL DESCRIPTION -- 2.2 SENSITIVITY ANALYSIS -- 2.2.1 Parameters -- 2.2.2 Virtual Catchment -- 2.2.3 Sensitivity Calculation -- 3. RESULTS AND DISCUSSION -- 3.1 LINEAR HILLSLOPE -- 3.1.1 Aggregated Parameters -- 3.2 COMPLEX HILLSLOPES -- 4. CONCLUDING REMARKS -- Acknowledgments -- REFERENCES -- 4 - SENSITIVITY OF VEGETATION PHENOLOGICAL PARAMETERS: FROM SATELLITE SENSORS TO SPATIAL RESOLUTION AND TEMPORAL CO ... -- 1. INTRODUCTION -- 2. MONITORING VEGETATION PHENOLOGY -- 3. SENSITIVITY ANALYSIS -- 4. SENSITIVITY OF REMOTELY SENSED PHENOLOGICAL PARAMETERS -- 4.1 SATELLITE SENSOR -- 4.2 VEGETATION INDEX -- 4.3 SPATIAL RESOLUTION -- 4.4 COMPOSITE PERIOD, SMOOTHING, AND FILTERING -- 4.4.1 Composite Period -- 4.4.2 Smoothing Techniques -- 5. CASE STUDY -- 5.1 STUDY AREA -- 5.2 DATA AND METHODOLOGY -- 5.3 RESULTS AND DISCUSSION -- 6. CONCLUSION -- REFERENCES -- 5 - RADAR RAINFALL SENSITIVITY ANALYSIS USING MULTIVARIATE DISTRIBUTED ENSEMBLE GENERATOR∗ -- 1. INTRODUCTION -- 2. DATA AND METHODS -- 2.1 STUDY AREA AND DATA SOURCES -- 2.2 THE MULTIVARIATE DISTRIBUTED ENSEMBLE GENERATOR -- 2.3 THE XINANJIANG MODEL -- 3. METHODOLOGY -- 3.1 EXPERIMENTAL DESIGN -- 3.2 VERIFICATION METHOD -- 4. RESULTS AND DISCUSSION. , 4.1 IMPLEMENTATION OF ENSEMBLE FLOW GENERATION -- 4.2 IMPACT OF ERROR DISTRIBUTION ON MODEL OUTPUT -- 4.3 IMPACT OF SPATIOTEMPORAL DEPENDENCE ON MODEL OUTPUT -- 5. CONCLUSIONS -- REFERENCES -- 6 - FIELD-SCALE SENSITIVITY OF VEGETATION DISCRIMINATION TO HYPERSPECTRAL REFLECTANCE AND COUPLED STATISTICS -- 1. INTRODUCTION -- 2. BACKGROUND ON SPECTRAL DISCRIMINATION OF VEGETATION -- 2.1 PARAMETRIC VERSUS NONPARAMETRIC STATISTICAL TESTS -- 2.1.1 Other Discrimination Methods -- 2.2 UNALTERED VERSUS PROCESSED HYPERSPECTRAL REFLECTANCE -- 2.3 CASE STUDIES FOR EFFECTS OF TYPE OF REFLECTANCE AND STATISTICAL TEST ON THE VEGETATION DISCRIMINATION RESULTS -- 3. SENSITIVITY OF SPECTRAL DISCRIMINATION OF VEGETATION TO THE TYPE OF REFLECTANCE AND STATISTICAL TEST -- 3.1 HYPERSPECTRAL DATA AND METHOD DESCRIPTION -- 3.2 SENSITIVITY OF VEGETATION SPECTRAL DISCRIMINATION TO REFLECTANCE TYPE AND STATISTICAL METHOD -- 3.3 SENSITIVITY OF VEGETATION SPECTRAL DISCRIMINATION TO THE NUMBER OF OBSERVATIONS -- 4. FINAL REMARKS -- REFERENCES -- 3 - GLOBAL (OR VARIANCE)-BASED SA METHODS: CASE STUDIES -- 7 - A MULTIMETHOD GLOBAL SENSITIVITY ANALYSIS APPROACH TO SUPPORT THE CALIBRATION AND EVALUATION OF LAND SURFACE MODELS -- 1. INTRODUCTION -- 2. MODEL AND METHODS -- 2.1 REGIONAL SENSITIVITY ANALYSIS -- 2.2 VARIANCE-BASED SENSITIVITY ANALYSIS -- 2.3 THE PAWN DENSITY-BASED METHOD -- 2.4 THE JULES MODEL -- 2.5 THE SANTA RITA CREOSOTE STUDY SITE -- 2.6 EXPERIMENTAL SETUP: DEFINITION OF INPUT FACTORS AND OUTPUTS -- 2.7 DEFINITION OF THE RANGE OF VARIATION OF THE INPUT FACTORS -- 3. RESULTS -- 3.1 RESULTS OF REGIONAL SENSITIVITY ANALYSIS -- 3.2 RESULTS OF VARIANCE-BASED SENSITIVITY ANALYSIS -- 3.3 RESULTS OF PAWN -- 3.4 OVERALL SENSITIVITY ASSESSMENT FROM THE MULTIMETHOD APPROACH -- 4. CONCLUSIONS -- Acknowledgments -- REFERENCES. , 8 - GLOBAL SENSITIVITY ANALYSIS FOR SUPPORTING HISTORY MATCHING OF GEOMECHANICAL RESERVOIR MODELS USING SATELLITE I ... -- 1. INTRODUCTION -- 2. CASE STUDY -- 2.1 SURFACE DEFORMATION AT THE KB-501 WELL OF IN SALAH SITE -- 2.2 THREE-DIMENSIONAL HYDROMECHANICAL MODEL OF KB-501 -- 3. METHODS -- 3.1 VARIANCE-BASED GLOBAL SENSITIVITY ANALYSIS -- 3.2 PRINCIPLES OF METAMODELING -- 3.3 INTRODUCTION TO KRIGING METAMODEL -- 3.4 DESCRIPTION OF THE WORKFLOW -- 4. APPLICATION -- 4.1 REDUCING THE NUMBER OF UNCERTAINTY INPUT PARAMETERS -- 4.2 CALIBRATION OF THE RESERVOIR YOUNG'S MODULUS -- SUMMARY AND FUTURE WORK -- Acknowledgments -- REFERENCES -- 9 - ARTIFICIAL NEURAL NETWORKS FOR SPECTRAL SENSITIVITY ANALYSIS TO OPTIMIZE INVERSION ALGORITHMS FOR SATELLITE-BAS ... -- 1. INTRODUCTION -- 2. DATA AND METHODS -- 2.1 ARTIFICIAL NEURAL NETWORKS: OVERVIEW -- 2.1.1 Artificial Neural Networks for the Inversion of Satellite Measurements of Spectral Radiation for the Observation of the Ear ... -- 2.2 NEURAL NETWORK-BASED TECHNIQUES TO REDUCE THE INPUT VECTOR DIMENSIONALITY -- 2.2.1 Extended Pruning -- 2.2.2 Autoassociative Neural Networks -- 2.3 SAMPLE DATA SET -- 2.3.1 Sulfate Aerosols and Their Extinction Coefficient -- 2.3.2 Thermal Infrared Satellite Pseudo-Observations -- 3. RESULTS -- 3.1 TRAINING AND TESTING THE MAXIMUM DIMENSIONALITY NEURAL NETWORK -- 3.2 SELECTION OF THE INPUT WAVELENGTHS AND SPECTRAL SENSITIVITY ANALYSIS -- 3.3 COMPARING THE PERFORMANCES OF REDUCED DIMENSIONALITY NEURAL NETWORK -- 4. CONCLUSIONS -- Acknowledgments -- REFERENCES -- 10 - GLOBAL SENSITIVITY ANALYSIS FOR UNCERTAIN PARAMETERS, MODELS, AND SCENARIOS -- 1. INTRODUCTION -- 2. MORRIS METHOD -- 3. SOBOL' METHOD -- 3.1 FIRST-ORDER AND TOTAL-EFFECT SENSITIVITY INDICES -- 3.2 MONTE CARLO IMPLEMENTATION AND TWO APPROXIMATION METHODS. , 3.2.1 Sparse-Grid Collocation for Evaluating Mean and Variance -- 3.2.2 Distributed Evaluation of Local Sensitivity Analysis -- 4. SOBOL' METHOD FOR MULTIPLE MODELS AND SCENARIOS -- 4.1 HIERARCHICAL FRAMEWORK FOR UNCERTAINTY QUANTIFICATION -- 4.2 GLOBAL SENSITIVITY INDICES FOR SINGLE MODEL AND SINGLE SCENARIO -- 4.3 GLOBAL SENSITIVITY INDICES FOR MULTIPLE MODELS BUT SINGLE SCENARIO -- 4.4 GLOBAL SENSITIVITY INDICES FOR MULTIPLE MODELS AND MULTIPLE SCENARIOS -- 5. SYNTHETIC STUDY WITH MULTIPLE SCENARIOS AND MODELS -- 5.1 SYNTHETIC CASE OF GROUNDWATER REACTIVE TRANSPORT MODELING -- 5.2 UNCERTAIN SCENARIOS, MODELS, AND PARAMETERS -- 5.3 TOTAL SENSITIVITY INDEX FOR HEAD UNDER INDIVIDUAL MODELS AND SCENARIOS -- 5.4 TOTAL SENSITIVITY INDEX FOR HEAD UNDER MULTIPLE MODELS BUT INDIVIDUAL SCENARIOS -- 5.5 TOTAL SENSITIVITY INDEX FOR HEAD UNDER MULTIPLE MODELS AND MULTIPLE SCENARIOS -- 5.6 TOTAL SENSITIVITY INDEX FOR ETHENE CONCENTRATION -- 6. USING GLOBAL SENSITIVITY ANALYSIS FOR SATELLITE DATA AND MODELS -- 7. CONCLUSIONS AND PERSPECTIVES -- Acknowledgments -- REFERENCES -- 4 - OTHER SA METHODS: CASE STUDIES -- 11 - SENSITIVITY AND UNCERTAINTY ANALYSES FOR STOCHASTIC FLOOD HAZARD SIMULATION -- 1. INTRODUCTION -- 2. BASIC PRINCIPLES OF STOCHASTIC APPROACH TO FLOOD HAZARD -- 2.1 STOCHASTIC SIMULATION OF RESERVOIR INFLOWS -- 2.1.1 Storm Seasonality -- 2.1.2 Precipitation Magnitude-Frequency Relationship -- 2.1.3 Temporal and Spatial Distribution of Storms -- 2.1.4 Air Temperature and Freezing Level Temporal Patterns -- 2.1.5 The 1000-mb Air Temperature Simulation -- 2.1.6 Air Temperature Lapse Rates -- 2.1.7 Freezing Level -- 2.1.8 Watershed Model Antecedent Conditions Sampling -- 2.1.9 Initial Reservoir Level -- 2.2 SIMULATION OF RESERVOIR OPERATION-FLOOD ROUTING -- 2.3 SIMULATION PROCEDURE. , 3. UNCERTAINTY ASSOCIATED WITH STOCHASTICALLY DERIVED FLOOD QUANTILES.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...