GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Earth observations  (1)
  • Indian Ocean  (1)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 121 (2016): 3465–3487, doi:10.1002/2015JC011417.
    Description: In the present work, we investigate the interannual variability of the South Indian Countercurrent (SICC), a major and still understudied current of the Indian Ocean circulation. To characterize the interannual variability of the SICC, four different data sets (altimetry, GLORYS, OFAM3, and SODA) are analyzed using multiple tools, which include Singular Spectrum Analysis and wavelet methods. The quasi-biennial band dominates the SICC low-frequency variance, with the main peak in the 1.5–1.8 year interval. A secondary peak (2.1–2.5 year) is only found in the western basin. Interannual and decadal-type modulations of the quasi-biennial signal are also identified. In addition, limitations of SODA before the 1960s in the SICC region are revealed. Within the quasi-biennial band, the SICC system presents two main patterns with a multiple jet structure. One pattern is characterized by a robust northern jet, while in the other the central jet is well developed and northern jet is weaker. In both patterns, the southern jet has always a strong signature. When the northern SICC jet is stronger, the northern cell of the subtropical gyre has a triangular shape, with its southern limb having a strong equatorward slant. The quasi-biennial variability of the SICC is probably related to the Indian Ocean tropical climate modes that are known to have a strong biennial characteristic.
    Description: ARC Discovery Project Grant Number: DP130102088; NSF Grant Number: OCE-091716; Ocean Science Division of VM Oceanica
    Description: 2016-11-26
    Keywords: Quasi-biennial variability ; Jets ; SICC ; Subtropical gyre ; Indian Ocean ; Wavelet
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Stammer, D., Bracco, A., AchutaRao, K., Beal, L., Bindoff, N. L., Braconnot, P., Cai, W., Chen, D., Collins, M., Danabasoglu, G., Dewitte, B., Farneti, R., Fox-Kemper, B., Fyfe, J., Griffies, S. M., Jayne, S. R., Lazar, A., Lengaigne, M., Lin, X., Marsland, S., Minobe, S., Monteiro, P. M. S., Robinson, W., Roxy, M. K., Rykaczewski, R. R., Speich, S., Smith, I. J., Solomon, A., Storto, A., Takahashi, K., Toniazzo, T., & Vialard, J. Ocean climate observing requirements in support of climate research and climate information. Frontiers in Marine Science, 6, (2019): 444, doi:10.3389/fmars.2019.00444.
    Description: Natural variability and change of the Earth’s climate have significant global societal impacts. With its large heat and carbon capacity and relatively slow dynamics, the ocean plays an integral role in climate, and provides an important source of predictability at seasonal and longer timescales. In addition, the ocean provides the slowly evolving lower boundary to the atmosphere, driving, and modifying atmospheric weather. Understanding and monitoring ocean climate variability and change, to constrain and initialize models as well as identify model biases for improved climate hindcasting and prediction, requires a scale-sensitive, and long-term observing system. A climate observing system has requirements that significantly differ from, and sometimes are orthogonal to, those of other applications. In general terms, they can be summarized by the simultaneous need for both large spatial and long temporal coverage, and by the accuracy and stability required for detecting the local climate signals. This paper reviews the requirements of a climate observing system in terms of space and time scales, and revisits the question of which parameters such a system should encompass to meet future strategic goals of the World Climate Research Program (WCRP), with emphasis on ocean and sea-ice covered areas. It considers global as well as regional aspects that should be accounted for in designing observing systems in individual basins. Furthermore, the paper discusses which data-driven products are required to meet WCRP research and modeling needs, and ways to obtain them through data synthesis and assimilation approaches. Finally, it addresses the need for scientific capacity building and international collaboration in support of the collection of high-quality measurements over the large spatial scales and long time-scales required for climate research, bridging the scientific rational to the required resources for implementation.
    Description: This work was partly supported by the DFG funded excellence center CliSAP of the Universituat Hamburg (DS). AB was supported by the National Science Foundation through award NSF-1658174 and by the NOAA through award NA16OAR4310173. SM was supported by the Earth Systems and Climate Change Hub of the Australian Government’s National Environmental Science Program.
    Keywords: Ocean observing system ; Ocean climate ; Earth observations ; In situ measurements ; Satellite observations ; Ocean modeling ; Climate information
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...