GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Earth Surface 118 (2013): 2045–2058, doi:10.1002/jgrf.20143.
    Description: Anthropogenic and climatic forces have modified the geomorphology of tidal wetlands over a range of timescales. Changes in land use, sediment supply, river flow, storminess, and sea level alter the layout of tidal channels, intertidal flats, and marsh plains; these elements define wetland complexes. Diagnostically, measurements of net sediment fluxes through tidal channels are high-temporal resolution, spatially integrated quantities that indicate (1) whether a complex is stable over seasonal timescales and (2) what mechanisms are leading to that state. We estimated sediment fluxes through tidal channels draining wetland complexes on the Blackwater and Transquaking Rivers, Maryland, USA. While the Blackwater complex has experienced decades of degradation and been largely converted to open water, the Transquaking complex has persisted as an expansive, vegetated marsh. The measured net export at the Blackwater complex (1.0 kg/s or 0.56 kg/m2/yr over the landward marsh area) was caused by northwesterly winds, which exported water and sediment on the subtidal timescale; tidally forced net fluxes were weak and precluded landward transport of suspended sediment from potential seaward sources. Though wind forcing also exported sediment at the Transquaking complex, strong tidal forcing and proximity to a turbidity maximum led to an import of sediment (0.031 kg/s or 0.70 kg/m2/yr). This resulted in a spatially averaged accretion of 3.9 mm/yr, equaling the regional relative sea level rise. Our results suggest that in areas where seaward sediment supply is dominant, seaward wetlands may be more capable of withstanding sea level rise over the short term than landward wetlands. We propose a conceptual model to determine a complex's tendency toward stability or instability based on sediment source, wetland channel location, and transport mechanisms. Wetlands with a reliable portfolio of sources and transport mechanisms appear better suited to offset natural and anthropogenic loss.
    Description: Funding was provided by the USGS Coastal and Marine Geology Program and the Climate and Land Use Change Research and Development Program.
    Description: 2014-04-07
    Keywords: Sediment transport ; Wetland geomorphology ; Wetland stability ; Estuarine hydrodynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Continental Shelf Research 60, Suppl. (2013): S40–S57, doi:10.1016/j.csr.2012.02.004.
    Description: Tidal flats at a river mouth feature estuarine and fluvial processes that distinguish them from tidal flats without river discharge. We combine field observations and a numerical model to investigate hydrodynamics and sediment transport on deltaic tidal flats at the mouth of the Skagit River, in Puget Sound, WA during the spring freshet. River discharge over tidal flats supplies a mean volume flux, freshwater buoyancy, and suspended sediment. Despite the shallow water depths, strong horizontal density fronts and stratification develop, resulting in a baroclinic pressure gradient and tidal variability in stratification that favor flood-directed bottom stresses. In addition to these estuarine processes, the river discharge during periods of low tide drains through a network of distributary channels on the exposed tidal flats, with strongly ebb-directed stresses. The net sediment transport depends on the balance between estuarine and fluvial processes, and is modulated on a spring-neap time scale by the tides of Puget Sound. We find that the baroclinic pressure gradient and periodic stratification enhance trapping of sediment delivered by the river on the tidal flats, particularly during neap tides, and that sediment trapping also depends on settling and scour lags, particularly for finer particles. The primary means of moving sediment off of the tidal flats are the high velocities and stresses in the distributary channels during late stages of ebbs and around low tides, with sediment export predominantly occurring during spring low tides that expose a greater portion of the flats. The 3-d finite volume numerical model was evaluated against observations and had good skill overall, particularly for velocity and salinity. The model performed poorly at simulating the shallow flows around low tides as the flats drained and river discharge was confined to distributary channels, due in part to limitations in grid resolution, seabed sediment and bathymetric data, and the wetting-and-drying scheme. Consequently, the model predicted greater sediment retention on the flats than was observed.
    Description: This work was supported by the Office of Naval Research.
    Keywords: Tidal flats ; Sediment transport ; Sediment trapping ; Distributary channels ; Stratification ; Salinity fronts ; Tidal asymmetry ; Velocity skewness ; Numerical model
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Muelbert, J. H., Nidzieko, N. J., Acosta, A. T. R., Beaulieu, S. E., Bernardino, A. F., Boikova, E., Bornman, T. G., Cataletto, B., Deneudt, K., Eliason, E., Kraberg, A., Nakaoka, M., Pugnetti, A., Ragueneau, O., Scharfe, M., Soltwedel, T., Sosik, H. M., Stanisci, A., Stefanova, K., Stephan, P., Stier, A., Wikner, J., & Zingone, A. ILTER - the International Long-Term Ecological Research Network as a platform for global coastal and ocean observation. Frontiers in Marine Science, 6, (2019): 527, doi: 10.3389/fmars.2019.00527.
    Description: Understanding the threats to global biodiversity and ecosystem services posed by human impacts on coastal and marine environments requires the establishment and maintenance of ecological observatories that integrate the biological, physical, geological, and biogeochemical aspects of ecosystems. This is crucial to provide scientists and stakeholders with the support and knowledge necessary to quantify environmental change and its impact on the sustainable use of the seas and coasts. In this paper, we explore the potential for the coastal and marine components of the International Long-Term Ecological Research Network (ILTER) to fill this need for integrated global observation, and highlight how ecological observations are necessary to address the challenges posed by climate change and evolving human needs and stressors within the coastal zone. The ILTER is a global network encompassing 44 countries and 700 research sites in a variety of ecosystems across the planet, more than 100 of which are located in coastal and marine environments (ILTER-CMS). While most of the ILTER-CMS were established after the year 2000, in some cases they date back to the early 1900s. At ILTER sites, a broad variety of abiotic and biotic variables are measured, which may feed into other global initiatives. The ILTER community has produced tools to harmonize and compare measurements and methods, allowing for data integration workflows and analyses between and within individual ILTER sites. After a brief historical overview of ILTER, with emphasis on the marine component, we analyze the potential contribution of the ILTER-CMS to global coastal and ocean observation, adopting the “Strength, Weakness, Opportunity and Threats (SWOT)” approach. We also identify ways in which the in situ parameters collected at ILTER sites currently fit within the Essential Ocean Variables framework (as proposed by the Framework for Ocean Observation recommendations) and provide insights on the use of new technology in long-term studies. Final recommendations point at the need to further develop observational activities at LTER sites and improve coordination among them and with external related initiatives in order to maximize their exploitation and address present and future challenges in ocean observations.
    Description: JM was supported by a CNPq fellowship (Grant No. 310047/2016-1) and by PELD Estuário da Lagoa dos Patos e Costa Adjacente (CNPq/CAPES/FAPERGS). SB was supported by US NSF (Grant #OCE-1655686). AB was supported by CAPES/CNPq/FAPES grant no. 441243/2016-9 to PELD Coastal Habitats of Espírito Santo as part of the Brazilian LTER program. HS was supported by US NSF (Grant #CCF-1539256 and #OCE-1655686), Simons Foundation (Grant #561126) and US NOAA/CINAR (Cooperative Agreement NA14OAR4320158).
    Keywords: climate change ; marine ecosystems ; ecology ; EOVs ; SWOT ; DEIMS
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...