GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Dissolved sulfur species  (1)
  • Hydrothermal vents  (1)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © National Shellfisheries Association, 2008. This article is posted here by permission of National Shellfisheries Association for personal use, not for redistribution. The definitive version was published in Journal of Shellfish Research 27 (2008): 177-190, doi:10.2983/0730-8000(2008)27[177:IBVFCT]2.0.CO;2.
    Description: In April 1991, submarine volcanic eruptions initiated the formation of numerous hydrothermal vents between 9°45′ and 9°52′N along the crest of the East Pacific Rise (EPR). Dramatic changes in biological community structure and vent fluid chemistry have been documented throughout this region since the eruptive event. By April 2004, mussels (Bathymodiolus thermophilus) dominated the faunal assemblages at several of the vent sites formed during of after the 1991 eruptions, whereas other habitats within the region were dominated by the vestimentiferan Riftia pachyptila. In the present paper, we build upon the extensive data sets obtained at these sites over the past decade and describe a manipulative experiment (conducted at 9°49.94′N; 104°14.43′W on the EPR) designed to assess interrelationships between vent fluid chemistry, temperature, biological community structure, and seismic activity. To this end, in situ voltammetric systems and thermal probes were used to measure H2S/HS− and temperature over time in a denuded region of an extensive mussel bed in which an exclusion cage was placed to inhibit the subsequent migration of mussels into the denuded area. Fluid samples were taken from the same locations to characterize the associated microbial constituents. Basalt blocks, which were placed in the cage in April 2004 and subsequently recovered in April 2005, were colonized by more than 25 different species of invertebrates, including numerous vestimentiferans and remarkably few mussels. Recorded temporal changes in vent fluid chemistry and temperature regimes, when coupled with microbiological characterization of the vent fluids and seismic activity data obtained from ocean bottom seismometers, shed considerable light on factors controlling biological community structure in these hydrothermal ecosystems.
    Description: Supported by NSF Grants OCE-9529819, ESI-0087679 (RAL), OCE-0327353 (RAL and CV), OCE-0327261, OCE-0451983 (TS), MCB-0456676, CHE-0221978 (CV), OCE-0326434 (GWL), and OCE-0327283 (MT), the Deep Ocean Exploration Institute at the Woods Hole Oceanographic Institution, and the New Jersey Agricultural Experiment Station at Rutgers University.
    Keywords: Hydrothermal vents ; Seismicity ; Voltammetry ; Vent chemistry ; Mussels
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-515X
    Keywords: Dissolved sulfur species ; inorganic solid sulfur ; pyrite ; salt marshes ; soluble iron ; short term changes ; 210Pb ; 137Cs ; 7Be
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Porewater species and solid inorganic sulfur speciation were measured before and after the spring tide (which occurs over a 6–7 day period) during a portion of the summer seasons of 1987, 1988 and 1989 in Great Marsh, Delaware. Samples were taken from two locations in the marsh (near creek and mid-marsh) inhabited by the short form of Spartina alterniflora. In 1987, pyrite and thiosulfate decreased over the spring tide. Other porewater species also underwent large changes in concentration — in some cases order of magnitude. However, in 1988 and 1989, there was no evidence for short term changes of pyrite. In 1988, drought conditions were prevalent throughout the sampling whereas in 1989 wet conditions were prevalent. Porewater parameters demonstrated that oxidation was extensive during the sampling period in 1988 and related to dessication. Both climatic and spring tidal flooding conditions have a pronounced affect on the chemistry of the system. Data from atmospherically derived radionuclides (210Pb,137Cs,7Be) indicate that bioturbation is not as important at the mid-marsh site as at the near creek site. Porewater chloride and7Be data support infiltration of overlying waters at both sites. The decrease in pyrite over the spring tide in the 1987 samples is related to oxidation. The possible oxidants are discussed and Fe(III) is the favored direct oxidant based upon a review of field and laboratory data. Iron(III) was measured in several filtered porewater samples. However, we cannot indicate with certainty that the Fe(III) is always soluble. The Fe(III) measured may be colloidal or complexed. Pyrite oxidation is noted when the Fe(III) to Fe(II) ratio, pH and alkalinity are all low.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...