GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Dioxygenase  (1)
  • Mutant (gib1)  (1)
Publikationsart
Verlag/Herausgeber
Erscheinungszeitraum
  • 1
    ISSN: 1432-2048
    Schlagwort(e): Gibberellin ; Lycopersicon ; Mutant (gib1) ; Stamen development ; Translatable mRNA populations
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract The gib1 mutant of tomato (Lycopersicon esculentum Mill.) is deficient in endogenous gibberellins and exhibits phenotypes including extreme dwarfism, reduced germination, and abnormal flower development, which are reversed by the application of gibberellic acid (GA3). Previous work has demonstrated that, in stamens of the gib1 mutant, pollen mother-cell development arrests at the premeiotic G1 stage (Jacobsen and Olszewski 1991, Plant Physiol. 97, 409–414). Following GA3 treatment of developmentally arrested flowers, pollen mother-cell development resumes and is synchronous. The present study examines gibberellin-induced changes in the translatable mRNA populations of developmentally arrested stamens and of vegetative shoots of the gib1 mutant. Following rescue of developmentally arrested stamens by treatment with GA3, we consistently detected increases and decreases in the abundance of 14 and 20 in-vitro translation products, respectively. Some of these changes were first detected 8 h post treatment and therefore represent the first changes observed in stamens whose development has been rescued by GA3 treatment. In vegetative gib1 shoots, the abundance of 13 in-vitro translation products decreased within 6–24 h after GA3 treatment. However, no in-vitro translation products that increased in abundance after GA3 treatment were detected.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1432-2048
    Schlagwort(e): Dehydrogenase ; Dioxygenase ; Gene expression ; Gibberellin ; Lycopersicon ; Proteinase inhibitor
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract In an effort to understand the molecular mechanism of gibberellin (GA) action, we have cloned and performed an initial characterization of three cDNAs (GAD1, 2, and 3) which correspond to RNAs that become less abundant by 2 h after treatment of tomato (Lycopersicon esculentum Mill.) shoot tissue with gibberellic acid (GA3). Treatment with either auxin or ethephon also decreases the abundance of all three of the GAD RNAs. The tomato ethylene-insensitive mutant, Nr, and the GA-deficient mutant, gib1, were used to show that GA or auxin regulation of GAD RNA abundance is not dependent on ethylene sensitivity, and that ethylene or auxin regulation is not dependent on normal levels of gibberellin biosynthesis. Treatment with abscisic acid (ABA) antagonizes the GA induced suppression of the GAD1 and GAD2 RNAs. GAD1 is similar to type-II wound-inducible plant proteinase inhibitors. Like the well-characterized proteinase inhibitor II (pin II) of tomato, the GAD1 and GAD2 RNAs are wound inducible. Induction of pin II and GAD1 RNA in gib1 was found to require less-severe wounding than was required using wild-type plants or plants doubly mutant for gib1 and sit (the sit mutation causes ABA deficiency). The predicted GAD2 protein sequence is similar to 2-oxoglutarate-dependent dioxygenases while the predicted GAD3 protein sequence is similar to proteins belonging to the nonmetalloshort-chain alcohol-dehydrogenase family, especially the T ASSELSEED2 (TS2) gene of maize and bacterial hydroxysteroid dehydrogenases.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...