GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 160 (1993), S. 312-318 
    ISSN: 1432-072X
    Keywords: Dimethylsulfoniopropionate ; Dimethylsulfide ; DMSP lyase ; marine bacteria ; α-Proteobacteria ; Roseobacter denitrificans
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A bacterium which cleaves dimethylsulfoniopropionate (DMSP) to form dimethylsulfide (DMS) was isolated from surface Sargasso Sea water by a DMSP enrichment technique. The isolate, here designated LFR, is a Gram-negative, obligately aerobic, rod-shaped, carotenoid-containing bacterium with a DNA G+C content of 70%. Sequencing and comparison of its 16S ribosomal ribonucleic acid (rRNA) with that of known eubacteria revealed highest similarity (91% unrestricted sequence similarity) to Roseobacter denitrificans (formerly Erythrobacter species strain OCh114), an aerobic, bacteriochlorophyll-containing marine representative of the α-Proteobacteria. However, physiological differences between the two bacteria, and the current lack of other characterized close relatives, preclude assignment of strain LFR to the Roseobacter genus. Screening of fifteen characterized marine bacteria revealed only one, Pseudomonas doudoroffii, capable of degrading DMSP to DMS. Strain LFR is deposited with the American Type Culture Collection (ATCC 51258) and 16S rRNA sequence data are available under GenBank accession number 15345.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 3269–3286, doi:10.1002/2016JC012465.
    Description: Concentrations of dimethylsulfide (DMS), measured in the Subarctic Pacific during summer 2010 and 2011, ranged from ∼1 to 40 nM, while dissolved dimethylsulfoxide (DMSO) concentrations (range 13-23 nM) exceeded those of dissolved dimethyl sulfoniopropionate (DMSP) (range 1.3–8.8 nM). Particulate DMSP dominated the reduced sulfur pool, reaching maximum concentrations of 100 nM. Coastal and off shore waters exhibited similar overall DMS concentration ranges, but sea-air DMS fluxes were lower in the oceanic waters due to lower wind speeds. Surface DMS concentrations showed statistically significant correlations with various hydrographic variables including the upwelling intensity (r2 = 0.52, p 〈 0.001) and the Chlorophyll a/mixed layer depth ratio (r2 = 0.52, p 〈 0.001), but these relationships provided little predictive power at small scales. Stable isotope tracer experiments indicated that the DMSP cleavage pathway always exceeded the DMSO reduction pathway as a DMS source, leading to at least 85% more DMS production in each experiment. Gross DMS production rates were positively correlated with the upwelling intensity, while net rates of DMS production were significantly correlated to surface water DMS concentrations. This latter result suggests that our measurements captured dominant processes driving surface DMS accumulation across a coastal-oceanic gradient.
    Description: Natural Sciences and Engineering Research Council of Canada, from the Peter Wall Institute for Advanced Studies
    Description: 2017-10-24
    Keywords: Dimethylsulfide ; DMSP ; DMSO ; DMS turnover ; Rate measurements ; Isotopic tracers ; Sea-air flux ; Upwelling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © Inter-Research, 2006. This article is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Marine Ecology Progress Series 322 (2006): 239-248, doi:10.3354/meps322239.
    Description: Dimethylsulfoniopropionate (DMSP) synthesized by marine phytoplankton is the principal source of dimethylsulfide (DMS), an important climate-affecting gas. Prior research has demonstrated that grazing by invertebrate phytoplanktivores often affects the dynamics of DMS production from algal DMSP, but the effects of grazing by phytoplanktivorous fish have not previously been investigated. We studied the fate of algal DMSP following grazing by juvenile Atlantic menhaden Brevoortia tyrannus (13 cm fork length), which are generally viewed as the most specialized for phytoplanktivory of all postlarval fish. The menhaden were fed the dinoflagellate Prorocentrum micans, containing 1 to 2 pmol DMSP cell–1. During the first 24 h following ingestion of algal DMSP, almost none of the DMSP (ca. 1%) appeared as DMS. About 21% of ingested DMSP appeared in the water column as dissolved DMSP, peaking in concentration 9 to 11 h after feeding; in natural settings, this fraction would be poised for microbial metabolism, including potential conversion to DMS in surface waters from which outgassing to the atmosphere could occur. About 10% of ingested DMSP appeared in fecal pellets that tended to sink rapidly toward the bottom of the tanks. About 33% of ingested DMSP was deposited in the tissues of the menhaden, in particular in the red and white swimming muscles, in which we observed concentrations exceeding 0.7 µmol g–1. This final fraction could ultimately be metabolized to DMS, or it could be passed up food chains and possibly act as a taste factor in commercially important piscivores such as striped bass and bluefish. In total, our research demonstrated that at least two-thirds of the ingested DMSP ends up in tissues or feces or in solution in the ambient water in the first 24 h after feeding, and virtually none is converted to ambient DMS during that time period.
    Description: Financial support came from Michigan State University (R.W.H. sabbatical) and National Science Foundation, Division of Ocean Sciences Grant nos. OCE-9411497 and OCE-9102532.
    Keywords: Dimethylsulfide ; Dimethylsulfoniopropionate ; Menhaden ; DMS ; DMSP ; Brevoortia tyrannus ; Taste factor ; Phytoplanktivory
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 35 (2008): L06603, doi:10.1029/2007GL031847.
    Description: This study, conducted in December 2004, is the first to present observations of DMS in a snow pack covering the multi-year sea ice of the western Weddell Sea. The snow layer is important because it is the interface through which DMS needs to be transported in order to be emitted directly from the ice to the overlying atmosphere. High concentrations of DMS, up to 6000 nmol m−3, were found during the first weeks of December but concentrations sharply decline as late spring-early summer progresses. This implies that DMS contained in sea ice is efficiently vented through the snow into the atmosphere. Indeed, field measurements by relaxed eddy accumulation indicate an average release of 11 μmol DMS m−2 d−1 from the ice and snow throughout December.
    Description: This work was financially supported by the Marie Curie Training Site Fellowship (contract HPMF-CT-2002-01865), by NERC (award NER/B/S/2003/00844) and by the U.S. National Science Foundation (OCE-0327601, and OCE-0425166).
    Keywords: Dimethylsulfide ; Multi-year ice ; Weddell Sea
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C01025, doi:10.1029/2002JC001616.
    Description: Gas transfer rates were determined from relaxed eddy accumulation (REA) measurements of the flux of dimethylsulfide (DMS) over the northeastern Pacific Ocean. This first application of the REA technique for the measurement of DMS fluxes over the open ocean produced estimates of the gas transfer rate that are on average higher than those calculated from commonly used parameterizations. The relationship between the total gas transfer rate and wind speed was found to be gas kgas = 0.53 (±0.05) U102. Because of the effect of the airside resistance, the waterside transfer rate was up to 16% higher than kgas. Removal of the airside transfer component from the total transfer rate resulted in a relation between wind speed and waterside transfer of k660 = 0.61 (±0.06) U102. However, DMS fluxes showed a high degree of scatter that could not readily be accounted for by wind speed and atmospheric stability. It has to be concluded that these measurements do not permit an accurate parameterization of gas transfer as a function of wind speed.
    Description: Funding for this work came from the Netherlands Organization for Scientific Research (NWO) and from the NOP project: ‘Micrometeorology of air/sea fluxes of carbon dioxide’ No. 951203. This work was also supported in part by the Office of Naval Research Grant No. N00014-00-1-0403, NOAA CICOR Grant No. NA87RJ0445, and the U.S. National Science Foundation Grant ATM- 0120569.
    Keywords: Dimethylsulfide ; DMS ; Relaxed eddy accumulation ; Micrometeorology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © Inter-Research, 2007. This article is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Marine Ecology Progress Series 343 (2007): 131-140, doi:10.3354/meps06825.
    Description: Dimethylsulfoniopropionate (DMSP) synthesized by marine phytoplankton is the principal source of dimethylsulfide (DMS), an important climate-affecting gas. Grazing by small zooplankton on phytoplankton often accelerates DMS production from algal DMSP. The effects of grazing by benthic suspension feeders, such as bivalve molluscs, however, have not been studied, even though their populations sometimes process a sizable fraction of local phytoplankton production. We fed Tetraselmis sp. Strain UW474 (27 to 42 fmol DMSP cell–1) to adult mussels Mytilus edulis and scallops Argopecten irradians and studied the fate of the algal DMSP during the 24 h following ingestion. Almost none of the ingested DMSP reappeared in the environment as DMS or DMSP; the amount that appeared in the ambient water as DMS was 〈1% of that ingested, and the sum total that appeared either as fecal DMSP (which microbes might convert to DMS) or in the water as DMS or DMSP was ≤3 to 4% of that ingested. In the short term, therefore, thriving bivalve populations probably strongly reduce the rate of DMS formation (direct or indirect) from local algal DMSP, in contrast to zooplankton populations. Ingested DMSP is likely accumulated in the bodies of mussels and scallops. However, although we have weak evidence of partial accumulation in scallop gastrointestinal tissue, we were unable to document accumulation in mussels because of high variability and statistical nonnormality in their naturally occurring DMSP content. In total, we showed that in the 24 h following feeding, mussels and scallops do not facilitate ambient DMS formation from algal DMSP and evidently sequester most of the algal DMSP they ingest.
    Description: Financial support came from Michigan State University (R.W.H. sabbatical) and the US National Science Foundation, grants OCE-9411497 and OCE-9102532.
    Keywords: Dimethylsulfide ; DMS ; Dimethylsulfoniopropionate ; DMSP ; Bivalves ; Mussels ; Scallops ; Mytilus edulis ; Argopecten irradians ; Phytoplanktivory
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...