GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Oecologia 175 (2014): 1117-1127, doi:10.1007/s00442-014-2982-y.
    Description: Atmospheric CO2 cycles of the Quaternary likely imposed major constraints on the physiology and growth of C3 plants worldwide. However, the measured record of this remains both geographically and taxonomically sparse. We present the first reconstruction of physiological responses in a late Quaternary high-elevation herbaceous plant community from the Southern Rocky Mountains, USA. We used a novel proxy – fossilized tooth enamel of yellow-bellied marmots (Marmota flaviventris) – which we developed using detailed isotopic analysis of modern individuals. Calculated carbon isotopic discrimination (Δ) of alpine plants was nearly 2‰ lower prior to the Last Glacial Maximum than at present, a response almost identical to nonherbaceous taxa from lower elevations. However, initial shifts in Δ aligned most closely with onset of the late Pleistocene bipolar temperature ‘see-saw’ rather than CO2 increase, indicating unique limitations on glacial-age high-elevation plants may have existed due to both low temperatures and low CO2. Further development of system-specific faunal proxies can help to clarify this and other plant- and ecosystem-level responses to past environmental change.
    Description: This research was funded by the National Science Foundation (Grant EAR-0819678), Rocky Mountain Biological Laboratory (Dr. Lee R.G. Snyder Fellowship), National Speleological Society (Research Grant), and UNM Biology Department (Joseph Gaudin Scholarship).
    Description: 2015-06-11
    Keywords: Atmospheric CO2 ; High elevation ; Plant carbon discrimination ; Tooth enamel ; Marmota
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecology and Evolution 5 (2015): 1278–1290, doi:10.1002/ece3.1437.
    Description: Compound-specific stable isotope analysis (CSIA) of amino acids (AA) has rapidly become a powerful tool in studies of food web architecture, resource use, and biogeochemical cycling. However, applications to avian ecology have been limited because no controlled studies have examined the patterns in AA isotope fractionation in birds. We conducted a controlled CSIA feeding experiment on an avian species, the gentoo penguin (Pygoscelis papua), to examine patterns in individual AA carbon and nitrogen stable isotope fractionation between diet (D) and consumer (C) (Δ13CC-D and Δ15NC-D, respectively). We found that essential AA δ13C values and source AA δ15N values in feathers showed minimal trophic fractionation between diet and consumer, providing independent but complimentary archival proxies for primary producers and nitrogen sources respectively, at the base of food webs supporting penguins. Variations in nonessential AA Δ13CC-D values reflected differences in macromolecule sources used for biosynthesis (e.g., protein vs. lipids) and provided a metric to assess resource utilization. The avian-specific nitrogen trophic discrimination factor (TDFGlu-Phe = 3.5 ± 0.4‰) that we calculated from the difference in trophic fractionation (Δ15NC-D) of glutamic acid and phenylalanine was significantly lower than the conventional literature value of 7.6‰. Trophic positions of five species of wild penguins calculated using a multi-TDFGlu-Phe equation with the avian-specific TDFGlu-Phe value from our experiment provided estimates that were more ecologically realistic than estimates using a single TDFGlu-Phe of 7.6‰ from the previous literature. Our results provide a quantitative, mechanistic framework for the use of CSIA in nonlethal, archival feathers to study the movement and foraging ecology of avian consumers.
    Description: This research was funded by National Science Foundation Office of Polar Programs [grants ANT-0125098, ANT-0739575] and the 2013 Antarctic Science Bursaries.
    Keywords: Amino acid ; Avian ; Compound-specific stable isotope analysis ; Diet ; Fractionation ; Penguin ; Trophic position
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...