GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Todd, R. E., Chavez, F. P., Clayton, S., Cravatte, S., Goes, M., Greco, M., Ling, X., Sprintall, J., Zilberman, N., V., Archer, M., Aristegui, J., Balmaseda, M., Bane, J. M., Baringer, M. O., Barth, J. A., Beal, L. M., Brandt, P., Calil, P. H. R., Campos, E., Centurioni, L. R., Chidichimo, M. P., Cirano, M., Cronin, M. F., Curchitser, E. N., Davis, R. E., Dengler, M., deYoung, B., Dong, S., Escribano, R., Fassbender, A. J., Fawcett, S. E., Feng, M., Goni, G. J., Gray, A. R., Gutierrez, D., Hebert, D., Hummels, R., Ito, S., Krug, M., Lacan, F., Laurindo, L., Lazar, A., Lee, C. M., Lengaigne, M., Levine, N. M., Middleton, J., Montes, I., Muglia, M., Nagai, T., Palevsky, H., I., Palter, J. B., Phillips, H. E., Piola, A., Plueddemann, A. J., Qiu, B., Rodrigues, R. R., Roughan, M., Rudnick, D. L., Rykaczewski, R. R., Saraceno, M., Seim, H., Sen Gupta, A., Shannon, L., Sloyan, B. M., Sutton, A. J., Thompson, L., van der Plas, A. K., Volkov, D., Wilkin, J., Zhang, D., & Zhang, L. Global perspectives on observing ocean boundary current systems. Frontiers in Marine Science, 6, (2010); 423, doi: 10.3389/fmars.2019.00423.
    Description: Ocean boundary current systems are key components of the climate system, are home to highly productive ecosystems, and have numerous societal impacts. Establishment of a global network of boundary current observing systems is a critical part of ongoing development of the Global Ocean Observing System. The characteristics of boundary current systems are reviewed, focusing on scientific and societal motivations for sustained observing. Techniques currently used to observe boundary current systems are reviewed, followed by a census of the current state of boundary current observing systems globally. The next steps in the development of boundary current observing systems are considered, leading to several specific recommendations.
    Description: RT was supported by The Andrew W. Mellon Foundation Endowed Fund for Innovative Research at WHOI. FC was supported by the David and Lucile Packard Foundation. MGo was funded by NSF and NOAA/AOML. XL was funded by China’s National Key Research and Development Projects (2016YFA0601803), the National Natural Science Foundation of China (41490641, 41521091, and U1606402), and the Qingdao National Laboratory for Marine Science and Technology (2017ASKJ01). JS was supported by NOAA’s Global Ocean Monitoring and Observing Program (Award NA15OAR4320071). DZ was partially funded by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA15OAR4320063. BS was supported by IMOS and CSIRO’s Decadal Climate Forecasting Project. We gratefully acknowledge the wide range of funding sources from many nations that have enabled the observations and analyses reviewed here.
    Keywords: Western boundary current systems ; Eastern boundary current systems ; Ocean observing systems ; Time series ; Autonomous underwater gliders ; Drifters ; Remote sensing ; Moorings
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Mulholland, M. R., Bernhardt, P. W., Widner, B. N., Selden, C. R., Chappell, P. D., Clayton, S., Mannino, A., & Hyde, K. High rates of N-2 fixation in temperate, western North Atlantic coastal waters expand the realm of marine diazotrophy. Global Biogeochemical Cycles, 33(7), (2019): 826-840, doi:10.1029/2018GB006130.
    Description: Dinitrogen (N2) fixation can alleviate N limitation of primary productivity by introducing fixed nitrogen (N) to the world's oceans. Although measurements of pelagic marine N2 fixation are predominantly from oligotrophic oceanic regions, where N limitation is thought to favor growth of diazotrophic microbes, here we report high rates of N2 fixation from seven cruises spanning four seasons in temperate, western North Atlantic coastal waters along the North American continental shelf between Cape Hatteras and Nova Scotia, an area representing 6.4% of the North Atlantic continental shelf area. Integrating average areal rates of N2 fixation during each season and for each domain in the study area, the estimated N input from N2 fixation to this temperate shelf system is 0.02 Tmol N/year, an amount equivalent to that previously estimated for the entire North Atlantic continental shelf. Unicellular group A cyanobacteria (UCYN‐A) were most often the dominant diazotrophic group expressing nifH, a gene encoding the nitrogenase enzyme, throughout the study area during all seasons. This expands the domain of these diazotrophs to include coastal waters where dissolved N concentrations are not always depleted. Further, the high rates of N2 fixation and diazotroph diversity along the western North Atlantic continental shelf underscore the need to reexamine the biogeography and the activity of diazotrophs along continental margins. Accounting for this substantial but previously overlooked source of new N to marine systems necessitates revisions to global marine N budgets.
    Description: Data presented in the body and supporting information of this manuscript have been deposited in the National Aeronautics and Space Administration (NASA) repository, SeaBASS and is publicly available at the following DOI address: 10.5067/SeaBASS/CLIVEC/DATA 001. This work was supported by a grant from NASA Grant Number: NNX09AE45G to M. R. M., A. M., and K. H.; a grant from NSF to P. D. C; and the Jacques S. Zaneveld and Neil and Susan Kelley Endowed Scholarships to C. S. We thank NOAA for ship time and the captain and crew of NOAA vessels Delaware II and Henry Bigelow for assistance during field sampling. Data have been submitted to SeaBASS (https://seabass.gsfc.nasa.gov/), NASA's preferred archival repository.
    Keywords: Nitrogen fixation ; Diazotrophy ; North American continental shelf
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...