GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-01-11
    Description: The ability of Synthetic Aperture Radar (SAR) to image the Earth's surface, even through dense cloud cover and in night-and-day conditions, can facilitate the evaluation and monitoring of natural hazards and the management of natural disasters. The family of SAR satellite sensors orbits the Earth at an altitude ranging from 500 to 800 km, following sun-synchronous, near-polar orbits, slightly inclined with respect to Earth meridians. The most commonly used bands in SAR applications are the C-band (5–6 GHz, ~5, 6 cm wavelength), the X-band (8–12 GHz, ~3, 1 cm wavelength), and the L-band (1–2 GHz ~23 cm wavelength) with a temporal resolution depending on the satellite revisiting time. The availability of SAR has made a new spectrum of measurements possible on a global and spatial scale not attainable by ground-based studies, revealing critical insights into remote or poorly understood areas (e.g., Biggs et al., 2014). This Research Topics presents a review of articles on the state-of-art in the application of SAR sensors to study surface deformation in different geologic environments and triggered by a variety of processes. The topics discussed range from the analysis of co-seismic deformation (Merryman Boncori) to studies of volcanic unrest (Dzurisin et al.; Garthwaite et al.), monitoring of landslides (Bianchini et al.) and ground subsidence in urban areas (Solari et al.).
    Description: Published
    Description: Article 191
    Description: 5IT. Osservazioni satellitari
    Description: JCR Journal
    Keywords: SAR (Synthetic Aperture Radar) ; InSAR (Interferometric Synthetic Aperture Radar), ; DInSAR (differential interferometric synthetic aperture radar) ; PSInSARTM ; SqueeSARTM algorithm ; SBAS and QPS InSAR techniques ; Multi-temporal InSAR (MT-InSAR)
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-01-07
    Description: We provide a dataset of 3D coordinate time series of 37 continuous GNSS stations installed for stability monitoring purposes on onshore and offshore industrial settlements along a NW-SE-oriented and ~100-km-wide belt encompassing the eastern Italian coast and the Adriatic Sea. The dataset results from the analysis performed by using different geodetic software (Bernese, GAMIT/GLOBK and GIPSY) and consists of six raw position time series solutions, referred to IGb08 and IGS14 reference frames. Time series analyses and comparisons evidence that the different solutions are consistent between them, despite the use of different software, models, strategy processing and frame realizations. We observe that the offshore stations are subject to significant seasonal oscillations probably due to seasonal environmental loads, seasonal temperature-induced platform deformation and hydrostatic pressure variations. Many stations are characterized by non-linear time series, suggesting a complex interplay between regional (long-term tectonic stress) and local sources of deformation (e.g. reservoirs depletion, sediment compaction). Computed raw time series, logs files, phasor diagrams and time series comparison plots are distributed via PANGAEA ( https://www.pangaea.de ).
    Description: This research was financed by the Italian Economic Development Ministry in the”CLYPEA-Innovation Network for Future Energy” framework, “subsoil deformations” project.
    Description: Published
    Description: 373
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: GNSS ; offshore platforms ; subsidence ; data processing ; oil/gas exploiting ; 04. Solid Earth ; 04.03. Geodesy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-02-24
    Description: The identification of the mechanisms responsible for the deformation of calderas is of primary importance for our understanding of the dynamics of magmatic systems and the evaluation of volcanic hazards. We analyze twenty years (1997–2018) of geodetic measurements on Ischia Island (Italy), which include the Mt. Epomeo resurgent block, and is affected by hydrothermal manifestations and shallow seismicity. The data from the GPS Network and the leveling route show a constant subsidence with values up to 􀀀15 2.0 mm/yr and a centripetal displacement rate with the largest deformations on the southern flank of Mt. Epomeo. The joint inversion of GPS and levelling data is consistent with a 4 km deep source deflating by degassing and magma cooling below the southern flank of Mt. Epomeo. The depth of the source is supported by independent geophysical data. The Ischia deformation field is not related to the instability of the resurgent block or extensive gravity or tectonic processes. The seismicity reflects the dynamics of the shallow hydrothermal system being neither temporally nor spatially related to the deflation.
    Description: Published
    Description: 4648
    Description: 1V. Storia eruttiva
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 4V. Processi pre-eruttivi
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: GNSS ; resurgent caldera ; subsidence ; modelling ; degassing processes ; earthquakes ; 04.08. Volcanology ; 04.03. Geodesy ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-01-23
    Description: Volcano ground deformation is a tricky puzzle in which different phenomena contribute to the surface displacements with different spatial–temporal patterns. We documented some high variable deformation patterns in response to the different volcanic and seismic activities occurring at Mt. Etna through the January 2015–March 2021 period by exploiting an extensive dataset of GNSS and InSAR observations. The most spectacular pattern is the superfast seaward motion of the eastern flank. We also observed that rare flank motion reversal indicates that the short‐term contraction of the volcano occasionally overcomes the gravity‐controlled sliding of the eastern flank. Conversely, fast dike intrusion led to the acceleration of the sliding flank, which could potentially evolve into sudden collapses, fault creep, and seismic release, increasing the hazard. A better comprehension of these interactions can be of relevance for addressing short‐term scenarios, yielding a tentative forecasting of the quantity of magma accumulating within the plumbing system.
    Description: Published
    Description: 847
    Description: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Description: JCR Journal
    Keywords: Etna Volcano ; SAR interferometry ; GNSS ; flank collapse ; magma intrusion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...