GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • DCCA  (1)
  • sulfate  (1)
Document type
Publisher
Years
  • 1
    ISSN: 1572-9729
    Keywords: fire ; climate change ; boreal forest ; stream ; sulfate ; acidity ; watershed
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In a boreal forest catchment in the Experimental Lakes Area in northwestern Ontario, wildfire caused an increase in the concentrations of strong acid anions and base cations of the stream. In the naturally base-poor Northwest (NW) Subbasin, a 1980 wildfire caused exports of strong acid anions to increase more than export of base cations, causing a 2.5 fold increase in the acidity of the stream. Mean annual stream pH declined from 5.15 prior to fire to 4.76 two years after fire. Acid-neutralizing capacity (ANC), calculated as the difference between total base cations and strong acid anions, decreased to 20% of pre-fire values. Sulfate and chloride were the strong acid anions responsible for the decline in ANC, increasing four-fold. While nitrate increased eleven-fold, concentrations were too low to significantly affect ANC. There was a significant correlation between weekly sulfate concentration and base cation concentration (r 2 = 0.83) in the two years after fire. Recovery of ANC was caused by the more rapid decline in concentration of sulfate than by changes in base cations. Drought produced a similar but weaker response than fire, with increased sulfate concentrations and decreased stream pH. Climatic warming that increases drought and fire frequency would have effects that mimic the impacts of acidic precipitation (i.e. higher sulfate concentrations and acidic stream waters). Areas which have higher concentrations of stored S from past acid precipitation or have large areas of peatlands in the watershed may have aggravated losses of S and H+ after drought and fire.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5052
    Keywords: Bryophytes ; Climatic and environmental gradients ; DCCA ; Peatlands
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Climate is a major factor affecting the development and form of peatlands, as well as the distribution of individual bryophyte species. This paper examines the climatic and ecological gradients affecting the distribution of peatland types along a north-south gradient in the Mackenzie River Basin. Based on a TWINSPAN analysis of bryophyte abundance from 82 peatlands in the Mackenzie River Basin, seven peatland types, two with southerly geographical distributions are recognized. In the Mackenzie River Basin, such local factors as surface water chemistry, pH, and solute concentration as well as height above the water table play a significant role in determinining bryophyte species distributions. Climate is secondary. Amongst the climatic variables, precipitation, length of the growing season, and annual temperature are the most signifcant. The seven peatland groups are: widespread poor fens; peat plateaus with thermokarst pools, low-Boreal bogs; bogs and peat plateus without thermokarst pools; low-Boreal dry poor fens; wet moderate-rich fens; and wet extreme-rich fens.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...