GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GEOMAR Catalogue / E-Books  (1)
  • Cytotoxin swd.  (1)
  • 1
    Online Resource
    Online Resource
    Berlin, Heidelberg :Springer Berlin / Heidelberg,
    Keywords: Plant proteins. ; Polypeptides. ; Ribosome Inactivating Proteins. ; Plant Lectins. ; Pflanzengift swd. ; Cytotoxin swd. ; Proteine swd. ; Ribosom swd. ; Inaktivierung swd. ; Electronic books.
    Description / Table of Contents: Focusing on the structure, function, and potential applications, this volume explores the underlying possibilities of toxic plant proteins. Written by experts in the field, Toxic Plant Proteins in is a valuable reference work.
    Type of Medium: Online Resource
    Pages: 1 online resource (274 pages)
    Edition: 1st ed.
    ISBN: 9783642121760
    Series Statement: Plant Cell Monographs ; v.18
    DDC: 572.62
    Language: English
    Note: Intro -- Toxic Plant Proteins -- Editors -- Preface -- Contents -- Evolution of Plant Ribosome-Inactivating Proteins -- 1 Introduction -- 2 General Overview of the Taxonomic Distribution of A and B Domains within the Viridiplantae -- 3 Overview of the Taxonomic Distribution of A and B Domains within the Magnoliophyta (Flowering Plants) -- 3.1 ``Classical´´ Type 2 RIPs (AB proteins) -- 3.2 Other Proteins with Ricin- Domains -- 4 Molecular Evolution of Type 2 RIPs -- 4.1 General Observations Concerning the Taxonomic Distribution of Type 2 RIPs and the Occurrence of Multiple Paralogs -- 4.2 Overall Phylogeny of Type 2 RIPs -- 4.3 Special Evolutionary Events: Gene Amplification and Generation of Type A and Type B Proteins from Genuine Type 2 RIPs -- 4.4 What is the Origin of Type 2 RIP Genes? -- 4.4.1 Origin of the B-hain -- 4.4.2 Origin of the A-hain -- 5 Molecular Evolution of Type 1 RIPs -- 5.1 Dicots and Monocots Other Than Poaceae -- 5.2 Poaceae Type 1 RIPs -- 5.2.1 O. sativa -- 5.2.2 Andropogoneae: Z. mays and Sorghum bicolor -- 5.2.3 Pooideae -- 5.2.4 Relationships between the RIPs from Poaceae and Other Seed Plants -- 6 What is the Relationship between Plant and Bacterial RIPs? -- 7 Chimeric RIPs Other Than Type 2 RIPs -- 7.1 JIP60 and Other Type AC Chimeric RIPs -- 7.2 Chimeric RIP with a C-erminal D Domain -- 8 Conclusions -- References -- RNA N-Glycosidase Activity of Ribosome-Inactivating Proteins -- 1 Introduction -- 2 Ricin as an RNA N-lycosidase -- 2.1 28S rRNA as the Target of Modification by Ricin and Other RIPs -- 2.2 RNA N-lycosidase Activity of Ricin A-hain -- 2.3 Other RIPs -- 2.4 Major Role of RNA in Protein Synthesis -- 3 Ribosomal Mechanisms Involving the Sarcin-icin Domain -- 3.1 Eukaryotic Translation Can Be Inhibited Strongly by Dysfunction of a Small Fraction of the Ribosome Population. , 3.2 Difference in the Modes of Action between α-arcin and Ricin -- 3.3 Substrate Specificity -- 3.4 Structure of the SRL -- 4 Ribosomal RNA Apurinic Site-pecific Lyase: Intrinsic Stability of the Ribosome -- References -- Enzymatic Activities of Ribosome-Inactivating Proteins -- 1 Introduction -- 2 Action of RIPs on Ribosomes and rRNA -- 2.1 Site of Modification by RIPs -- 2.2 Structural Requirements in Ribosomal RNA for RIP Action -- 3 Polynucleotide:Adenosine Glycosidase Activity -- 3.1 5 Cap-ndependent Activity -- 3.2 5 Cap-ependent Activity -- 4 DNA Lyase -- 5 Bifunctional Enzymes with RIP Activity in Which the Non-IP Activity Acts on Non-ucleic Acid Substrates -- 5.1 Lipase -- 5.2 Chitinase -- 5.3 Superoxide Dismutase -- 6 Conclusions -- References -- Type I Ribosome-Inactivating Proteins from Saponaria officinalis -- 1 Introduction -- 2 Saporin Multigene Family and Saporin Isoforms -- 3 Saporin Biochemical Features -- 3.1 Saporin Structure -- 3.2 Saporin Catalytic Activity -- 3.3 Residues Important for the Catalytic Activity -- 3.4 Interaction with the Ribosome -- 3.5 Saporin Inhibitors -- 4 Saporin Trafficking and Toxicity in Eukaryotic Cells -- 4.1 Subcellular Distribution of Saporin Isoforms in Soapwort Tissues -- 4.2 Saporin Biosynthesis and Role in Planta -- 4.3 Intoxication Pathways in Mammalian Cells -- 5 Heterologous Expression of Saporin and Saporin Fusion Toxins -- 6 Conclusions and Perspectives -- References -- Type 1 Ribosome-Inactivating Proteins from the Ombú Tree (Phytolacca dioica L.) -- 1 Introduction -- 2 RIPs from P. dioica L. -- 2.1 Isolation of RIPs from Seeds and Leaves of P. dioica -- 2.2 Basic Characteristics of RIPs from Seeds and Leaves of P. dioica -- 2.3 Differential Seasonal and Age Expression in Leaves -- 2.4 Cellular Localization -- 2.5 Glycosylation of P. dioica RIPs -- 3 Enzymatic and Biological Characteristics. , 3.1 Neta-lycosidase and APG Activities -- 3.2 Toxicity to Mice -- 3.3 Immunotoxin -- 3.4 Cross-eactivity -- 3.5 Activity on Double-tranded pBR322 DNA -- 4 X-ay Crystal Structure of P. dioica RIPs -- 4.1 Atomic Resolution Studies of PD-4: A Reference RIP Structure -- 4.2 An Insight into the Active Site of PD-4: Tyr72 as a Substrate Carrier Through pi- Stacking Interactions with Aden -- 4.3 PD-1 and PD-4 -Two Homologous Proteins with Distinct Functional Properties -- 5 Concluding Remarks -- References -- Sambucus Ribosome-Inactivating Proteins and Lectins -- 1 Ribosome-nactivating Proteins -- 2 Occurrence and Structural Diversity of Sambucus Proteins -- 3 Similarity and Processing -- 4 Structure -- 5 Enzymic Activity -- 6 Toxicity to Cells and Animals -- 7 Interaction with Cells -- 8 Phylogenetic Relationship Among the RIPs and Lectins from Sambucus -- 9 Uses of the RIPs and Lectins From Sambucus -- References -- Ribosome-Inactivating Proteins from Abrus pulchellus -- 1 Introduction -- 2 Pulchellin Isoforms -- 3 The Heterologous Expression of Pulchellins -- 3.1 The Pulchellin A-hain -- 3.2 The Pulchellin B-hain -- 4 Pulchellin Endocytosis in Mammalian Cells -- 5 Structure of Pulchellin -- 6 Conclusion -- References -- Ribosome-Inactivating Proteins in Cereals -- 1 Introduction -- 2 Classification of RIPs -- 3 Applied Research on RIPs -- 4 Properties of Cereal RIPs -- 4.1 Rice RIPs -- 4.2 Wheat RIPs -- 4.3 Barley RIPs -- 4.4 Maize RIPs -- 5 Transgenic Plants Expressing RIPs -- 6 Conclusions -- References -- Ribosome Inactivating Proteins and Apoptosis -- 1 Introduction -- 2 Mechanism of Action of RIPs -- 3 Apoptosis -- 4 Ribosome Inactivating Proteins and Apoptosis -- 4.1 Activation of Intrinsic Pathway of Apoptosis by General Stress -- 4.2 Activation of the Extrinsic Pathway of Apoptosis -- 4.3 Impaired Balance Between and Pro-and Anti-poptotic Factors. , 4.4 Induction of Apoptosis in Response to Ribotoxic Stress -- 4.5 The Intrinsic Nuclease Activity of Toxins -- 4.6 Alternate Pathways -- 4.6.1 PARP Activation Resulting in NAD+Depletion -- 4.6.2 Down-egulation of Telomerase -- 4.6.3 Inhibition of Histone Deacetylase -- 4.6.4 Degradation of Cytoskeleton Proteins -- 4.6.5 Nitric Oxide-ediated Apoptosis Pathway -- 5 Conclusion -- References -- The Synthesis of Ricinus communis Lectins -- 1 Introduction -- 2 Ricin -- 2.1 Synthesis and Quality Control of Proricin -- 2.1.1 Synthesis and ER Translocation -- 2.1.2 Anterograde Trafficking -- 2.2 Ricin A Chain: ER Synthesis and Turnover in the Cytosol -- 2.3 Ricin B Chain: Synthesis and Quality Control -- 3 RCA 1 -- 3.1 RCA Synthesis and Assembly -- 4 Concluding Remarks -- References -- How Ricin Reaches its Target in the Cytosol of Mammalian Cells -- 1 Introduction -- 2 Cytotoxicity Model -- 3 Cell Entry -- 3.1 Cell Surface Events Remain Cryptic -- 3.2 Retrograde Trafficking -- 3.3 Ricin Is Delivered to the ER -- 3.4 Ricin Is Reduced to its Constituent Chains in the ER -- 3.5 RTA Unfolds in the ER -- 3.6 Chaperone Interactions in the ER -- 3.7 The Dislocation Process for RTA Remains Mysterious -- 4 Recovery of Activity in the Cytosol -- 5 Conclusions -- References -- Ribosome-Inactivating Protein-Containing Conjugates for Therapeutic Use -- 1 Introduction -- 2 Distribution -- 2.1 Enzymatic Activity -- 2.2 Toxicity -- 3 Properties of RIPs -- 3.1 Other Biological Properties -- 3.2 Possible Uses -- 3.3 Role in Nature -- 4 RIP-Based Immunotoxins -- 4.1 Chemical Immunotoxins -- 4.2 Recombinant Immunotoxins -- 4.3 In Vitro Cytotoxicity -- 4.4 Enhancement of Cytotoxicity -- 4.4.1 Lysosomotropic Amines and Carboxylic Ionophores -- 4.4.2 Ammonium Chloride (NH4Cl) -- 4.4.3 Chloroquine -- 4.4.4 Other Lysosomotropic Amines (Methylamine, Amantadine). , 4.4.5 Carboxylic Ionophores -- 4.4.6 Antagonists of Ca++ Channels and Other Compounds3.4.6 Antagonists of Ca++ channels and other compounds -- 4.4.7 Verapamil and Its Derivatives -- 4.4.8 Perhexiline and Indolizines -- 4.4.9 Ricin B-Chain -- 4.4.10 Viruses -- 4.4.11 Saponins -- 5 Animal Studies -- 6 Ex Vivo Bone Marrow Purging with Immunotoxins -- 7 Clinical Studies -- 7.1 Hematologic Tumors -- 7.1.1 Hodgkin´s Lymphoma -- 7.1.2 Non-Hodgkin´s Lymphoma -- 7.1.3 Leukemia -- 7.1.4 Multiple Myeloma -- 7.1.5 Cutaneous Lymphoma -- 7.2 Cerebrospinal Fluid Spread of Tumors -- 7.3 Solid Tumors -- 7.3.1 Small-Cell Lung Cancer (SCLC) -- 7.3.2 Bladder Cancer -- 7.3.3 Breast Tumors -- 7.3.4 Colon Carcinoma -- 7.3.5 Melanoma -- 8 Autoimmune Diseases -- 8.1 RA -- 8.2 SLE -- 9 Other Applications -- 9.1 Corneal Opacification -- 10 Problems and Opportunities in the Future Development of Immunotoxins -- 10.1 Selection of Patients -- 10.2 Immunogenicity -- 10.3 Side Effects -- 11 Conclusions -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...