GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-1561
    Keywords: Rhithropanopeus harrisii ; crab ; Crustacea ; larval release pheromone ; peptide pheromone ; trypsin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Studies of crab egg hatching and larval release behavior in the crab,Rhithropanopeus harrisii, generated a model describing the process. In the model, carboxyl terminal arginine peptides serve as pheromones that synchronize larval release. In response to the peptides, the female performs Stereotypic larval release behavior and casts larvae into the water column. The peptides originate from trypsin-like enzymatic activity as part of the egghatching process. Hatching can be simulated experimentally by incubating ovigerous crabs in either bovine or porcine trypsin. The female performs the larval release behavior. Eggs detach from the female, and immobile larvae hatch prematurely. Preincubation of trypsin with trypsin inhibitors eliminates these effects. Approximately nanomolar concentrations of five different polypeptide trypsin inhibitors evoke the female's larval release behavior. Because both peptides and trypsin inhibitors evoke larval release behavior and because trypsin inhibitors bind to both the peptide receptor and the enzyme with high affinity, the receptor binding site and trypsin catalytic site must be very similar. A relationship between the binding site of a peptide receptor and the catalytic site of trypsin is postulated. The difference may be substitution by a basic amino acid for the catalytic site serine. Molecular graphics modeling indicates that all necessary conditions for receptor binding can be met by substitution with lysine for the active site serine in the trypsin catalytic site. This substitution eliminates catalytic activity, maintains the binding affinity for trypsin inhibitors, and increases binding strength for peptides.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-3904
    Keywords: biexponential kinetics ; proline helices ; substituted proline residues
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The kinetics of isomerization of the helical forms of three oligoprolines was determined by far-ultraviolet CD spectropolarimetry and kinetic analysis by singular value decomposition. ZRA (Pro3-X-Pro2-Y-Pro2-Z-Pro3) and ZRA2 (Pro7-X-Pro2-Y-Pro2-Z-Pro7) bear large redox-active substituents on proline residues X, Y, and Z, but P9 (Pro9) does not. All three peptides formed a stable proline-II helix in water. In acetonitrile, both ZRA2 and P9 were converted into a proline-I helical form but ZRA remained predominantly in the proline-II helical form. Evidently, in order to undergo substantial proline II→I isomerization, an oligoproline chain containing large substituents needs to have a segment of consecutive unsubstituted proline residues that is sufficiently long to form a stable proline helix. Biexponential kinetics (A→B, k1 = ∼3.3 × 10-4 s-1; B→C, k2 = ∼0.8 × 10-4 s-1) were observed for the proline II→I isomerization of ZRA2 and P9 in acetonitrile and for the proline I→II isomerization of ZRA2 in water, which provides evidence for the growth and decay of a major kinetic intermediate.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-3904
    Keywords: biexponential kinetics ; proline helices ; substituted proline residues
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Summary The kinetics of isomerization of the helical forms of three oligoprolines was determined by far-ultraviolet CD spectropolarimetry and kinetic analysis by singular value decomposition. ZRA (Pro3-X-Pro2-Y-Pro2-Z-Pro3) and ZRA2 (Pro7-X-Pro2-Y-Pro2-Z-Pro7) bear large redox-active substituents on proline residues X, Y, and Z, but P9 (Pro9) does not. All three peptides formed a stable proline-II helix in water. In acetonitrile, both ZRA2 and P9 were converted into a proline-I helical form but ZRA remained predominantly in the proline-II helical form. Evidently, in order to undergo substantial proline II→I isomerization, an oligoproline chain containing large substituents needs to have a segment of consecutive unsubstituted proline residues that is sufficiently long to form a stable proline helix. Biexponential kinetics (A→B, k1=∼3.3×10−4s−1; B→C, k2=∼0.8×10−4s−1) were observed for the proline II→I isomerization of ZRA2 and P9 in acetonitrile and for the proline I→II isomerization of ZRA2 in water, which provides evidence for the growth and decay of a major kinetic intermediate.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...