GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geophysical Research Letters 45 (2018): 8425-8434, doi:10.1029/2018GL078904.
    Description: Compound‐specific radiocarbon analysis was performed on different grain‐size fractions of surficial sediments to examine and compare lateral transport times (LTTs) of organic carbon. 14C aging of long‐chain leaf wax fatty acids along two dispersal pathways of fluvially derived material on adjacent continental margins implies LTTs over distances of ~30 to 500 km that range from hundreds to thousands of years. The magnitude of aging differs among grain size fractions. Our finding suggests that LTTs vary both temporally and spatially as a function of the specific properties of different continental shelf settings. Observations suggest that 14C aging is widespread during lateral transport over continental shelves, with hydrodynamic particle sorting inducing age variations among organic components residing in different grain sizes. Consideration of these phenomena is of importance for understanding carbon cycle processes and interpretation on sedimentary records on continental margins.
    Description: National Natural Science Foundation of China Grant Numbers: 41520104009, 41521064; MOE; JSPS Grant Numbers: A‐1003, 2‐1304, B‐0904, B‐0903, 22310014, 23651021, 25550020; NIES; SNSF Grant Number: 200021_140850
    Keywords: Radiocarbon ; Lateral particle transport time ; Organic carbon aging ; Continental shelf sediments ; Grain size fractions
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wagner, S., Schubotz, F., Kaiser, K., Hallmann, C., Waska, H., Rossel, P. E., Hansmann, R., Elvert, M., Middelburg, J. J., Engel, A., Blattmann, T. M., Catala, T. S., Lennartz, S. T., Gomez-Saez, G., V., Pantoja-Gutierrez, S., Bao, R., & Galy, V. Soothsaying DOM: A current perspective on the future of oceanic dissolved organic carbon. Frontiers in Marine Science, 7, (2020): 341, doi:10.3389/fmars.2020.00341.
    Description: The vast majority of freshly produced oceanic dissolved organic carbon (DOC) is derived from marine phytoplankton, then rapidly recycled by heterotrophic microbes. A small fraction of this DOC survives long enough to be routed to the interior ocean, which houses the largest and oldest DOC reservoir. DOC reactivity depends upon its intrinsic chemical composition and extrinsic environmental conditions. Therefore, recalcitrance is an emergent property of DOC that is analytically difficult to constrain. New isotopic techniques that track the flow of carbon through individual organic molecules show promise in unveiling specific biosynthetic or degradation pathways that control the metabolic turnover of DOC and its accumulation in the deep ocean. However, a multivariate approach is required to constrain current carbon fluxes so that we may better predict how the cycling of oceanic DOC will be altered with continued climate change. Ocean warming, acidification, and oxygen depletion may upset the balance between the primary production and heterotrophic reworking of DOC, thus modifying the amount and/or composition of recalcitrant DOC. Climate change and anthropogenic activities may enhance mobilization of terrestrial DOC and/or stimulate DOC production in coastal waters, but it is unclear how this would affect the flux of DOC to the open ocean. Here, we assess current knowledge on the oceanic DOC cycle and identify research gaps that must be addressed to successfully implement its use in global scale carbon models.
    Description: This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) project number 422798570. The Hanse-Wissenschaftskolleg and the Geochemical Society provided funding for the conference. Additional support was provided by the National Science Foundation OCE #1756812 to SW. TB acknowledges funding from ETH Zürich and JAMSTEC. JM was supported by the Netherlands Earth System Science Centre. SP-G was funded by COPAS Sur-Austral (CONICYT PIA APOYO CCTE AFB170006). GG-S acknowledges funding from DFG, DI 842/6-1.
    Keywords: Dissolved organic carbon ; Global carbon cycle ; Recalcitrance ; Isotopic probing ; Climate change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...